12.4 实验三 栈和队列的综合应用
8. (必做题)迷宫问题。假设迷宫由m行n列构成,有一个入口和一个出口,入口坐标为(1,1),出口坐标为(m,n),试设计并验证以下算法:找出一条从入口通往出口的路径,或报告一个“无法通过”的信息。
(1) 用C语言实现顺序存储结构上队列的基本操作,然后利用该队列的基本操作找出迷宫的一条最短路径。
(2) 设计一个二维数组MAZE[m+2][n+2]表示迷宫,数组元素为0表示该位置可以通过,数组元素为1表示该位置不可以通行。MAZE[1][1]、MAZE[m][n]分别为迷宫的入口和出口。
(3) 输入迷宫的大小m行和n列,动态生成二维数组;由随机数产生0或1,建立迷宫,注意m*n的迷宫需要进行扩展,扩展部分的元素设置为1,相当于在迷宫周围布上一圈不准通过的墙。
(4) 要求输出模拟迷宫的二维数组;若存在最短路经,则由出口回溯到入口(出队列并利用栈实现),再打印从入口到出口的这条路径,例如(1,1),……,(i,j),……,(m,n);若没有路径,则打印“No path!”。
(5) 迷宫的任一位置(i,j)上均有八个可以移动的方向,用二维数组Direction存放八个方向上的位置偏移量。
Direction[8][2]={{0,1},{1,1},{0,-1},{-1,-1},{1,1},{0,-1},{-1,-1},{0,1}};
(6) 为避免出现原地踏步的情况为了标志已经通过的位置,采用一个标志数组MARK[m+2][n+2],初值均为0,在寻找路径的过程中,若通过了位置(i,j),则将MARK[i][j]置为1。
(7) 为了记录查找过程中到达位置(i,j)及首次到达(i,j)的前一位置(i_pre,j_pre),需要记住前一位置(i_pre,j_pre)在队列中的序号pre,即队列中数据元素应该是一个三元组(i,j,pre)。
(8) 搜索过程简单描述如下:将入口MAZE[1][1]作为第一个出发点,依次在八个方向上搜索可通行的位置,将可通行位置(i,j,pre)入队,形成第一层新的出发点,然后依次出队,即对第一层中各个位置分别搜索它所在八个方向上的可通行位置,形成第二层新的出发点,…,如此进行下去,直至达到出口MAZE[m][n]或者迷宫所有位置都搜索完毕为止。
#include<bits/stdc++.h>
using namespace std;
int n,m;
const int N = 111;
typedef pair<int,int> pii;
char s[N][N];
int d[N][N];
pii p[N][N]; //p数组用于记录回路。
queue<pii> q;
int bfs(void) // 宽搜找最短路
{
memset(d,-1,sizeof d); //初始化距离为-1
d[0][0] = 0;
q.push({0,0});
int dx[8] = {-1,0,1,0,1,-1,1,-1};
int dy[8] = {0,1,0,-1,1,1,-1,-1};
while(q.size())
{
pii t = q.front();
q.pop();
for(int i=0;i<8;i++)
{
int x = t.first + dx[i];
int y = t.second + dy[i];
if(x<n && y<m && x>=0 && y>=0 && d[x][y]==-1 && s[x][y]=='0')
{
p[x][y] = t;
q.push({x,y});
d[x][y] = d[t.first][t.second] + 1;
}
}
}
return d[n-1][m-1];
}
void out(void) //用p数组回溯,标记路径。
{
int x=n-1,y=m-1;
s[0][0] = '*', s[x][y] = '*';
while(x||y)
{
pii t = p[x][y];
x = t.first;
y = t.second;
s[t.first][t.second] = '*';
}
cout << "路径*:" << endl;
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
cout << s[i][j] << ' ';
}
cout << endl;
}
}
int main()
{
std::ios::sync_with_stdio(false);
cin.tie(0);
srand(time(0));
cin >> n >> m;
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
{
int t = rand()%10;
if(t<8) s[i][j] = '0';
else s[i][j] = '1';
}
if(bfs()== -1)
cout << "迷宫无解" << endl;
else
{
cout <<"最短路数为:"<< bfs() <<endl;
out();
}
}
/*
测试数据:
10 10
最短路数为:10
路径*:
* 0 0 0 0 0 1 0 0 0
* 0 0 1 0 0 0 0 0 0
0 * 0 0 0 0 0 0 0 0
0 1 * 0 1 0 0 0 0 0
0 0 0 * 1 0 0 0 0 0
1 1 0 0 * * 1 0 1 0
1 0 1 0 0 0 * 0 0 1
0 0 0 0 0 0 0 * 0 0
0 0 0 1 0 0 0 1 * 0
0 0 0 0 1 1 0 1 0 *
--------------------------------
Process exited with return value 0
Press any key to continue . . .
*/