上传csv或excel到hive建表脚本

8 篇文章 0 订阅
2 篇文章 0 订阅

上传csv文件到hive, 自动建表小脚本。

  • 支持解析字段类型
  • 以parquet格式上传
# coding=utf8
"""
requirements:
 tableschema
 sqlalchemy
 pandas
 pyarrow
 pyhive
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from tableschema import Table
from sqlalchemy import create_engine
import pandas as pd
import logging
import numpy as np
import time
import os

logging_format = '%(asctime)s pid:%(process)d %(levelname)s %(module)s - %(message)s'
logging.basicConfig(level=logging.INFO, format=logging_format, filemode='a')

SCHEMA_HIVE_TYPES = {
    "integer": "BIGINT",
    "number": "DOUBLE",
    "string": "STRING",
    "int": "BIGINT"
}


class HiveUploader(object):
    """
    上传csv, 在hive建表
    """

    def __init__(self, source_file, table_name, location, sqlalchemy_uri, if_exits="fail"):
        """
        hive uploader init params
        :param source_file: file path for csv to upload
        :param table_name:  table_name to be created
        :param location: oss or s3 or hdfs
        :param sqlalchemy_uri:
            hive connection uri, e.g.
            "hive://{username}:{password}@{host}:{port}/default"
        :param if_exits: replace, append, or fail, default is "fail"
        """
        self._source_file = source_file
        self._target_file = os.path.join("/tmp", table_name)
        self._table_name = table_name
        self._location = location
        self._engine = create_engine(sqlalchemy_uri, connect_args={"auth": "LDAP"})
        self._if_exits = if_exits
        self._db_name = table_name.split(".")[0]
        self._tbl_name = table_name.split(".")[1]

    def _drop_table(self):
        statement = """drop table if exists %s""" % self._table_name
        self._engine.execute(statement)

    def _check_if_exits(self):
        """
        check if the table_name exists.
        :return:
        """
        sql = """show tables from {} like '{}'""".format(self._db_name, self._tbl_name)
        df = pd.read_sql_query(sql, self._engine)
        exist = not df.empty
        logging.info("table %s exists status: %s" % (table_name, exist))
        return not df.empty

    def _drop_table(self):
        """
        drop table before create
        :return:
        """
        sql = """drop table if exists {}""".format(self._table_name)
        logging.info(sql)
        self._engine.execute(sql)

    def replace(self):
        # 1: drop table
        self._drop_table()
        self.upload()

    def repair_table(self):
        sql = "msck repair table {}".format(self._table_name)
        self._engine.execute(sql)

    def append(self):
        target_file, create_sql = self.prepare_upload()
        HiveUploader.upload_to_oss(target_file, self._location + str(int(time.time())))
        self.repair_table()

    def prepare_upload(self):
        # parse columns
        df = pd.read_csv(source_file)
        table_schema = Table(source_file).infer()
        fields = table_schema.get("fields")
        schema = {}
        columns = []
        for field in fields:
            column_name = field['name']
            col_type = field["type"]
            if column_name not in df.columns:
                continue
            if col_type in SCHEMA_HIVE_TYPES:
                column_type = SCHEMA_HIVE_TYPES[col_type]
            else:
                column_type = "STRING"
            schema[column_name] = column_type
            columns.append(column_name)
        df.columns = columns
        for column_name in columns:
            column_type = schema[column_name]
            try:
                if column_type == "BIGINT":
                    df[column_name].fillna(0, inplace=True)
                    df[column_name] = df[column_name].astype(np.int64)
                elif column_type == "DOUBLE":
                    df[column_name].fillna(0, inplace=True)
                    df[column_name] = df[column_name].astype(np.float64)
                else:
                    df[column_name].fillna('', inplace=True)
                    df[column_name] = df[column_name].astype(str)
            except:
                df[column_name] = df[column_name].astype(str)
                schema[column_name] = "STRING"
        df.tail().to_parquet(self._target_file)
        column_defs = ["`{}` {}".format(c, schema[c]) for c in columns]
        column_definition = ",\n           ".join(column_defs)
        location, file_name = os.path.split(self._location)
        create_sql = """
        create table {} (
           {}
        )

        STORED AS parquet
        location '{}'
        """.format(self._table_name, column_definition, location)
        return self._target_file, create_sql

    @staticmethod
    def upload_to_oss(target_file, oss_path):
        rm = "oss rm " + oss_path
        os.system(rm)
        cp = "oss cp {} {}".format(target_file, oss_path)
        os.system(cp)

    def upload(self):
        """upload to oss and create table"""
        logging.info("start to upload file to oss!")
        target_file, create_sql = self.prepare_upload()
        # upload file to oss
        HiveUploader.upload_to_oss(target_file, self._location)
        # create table
        self._engine.execute(create_sql)

    def run(self):
        # 1: check if table exists
        exists = self._check_if_exits()
        if exists:
            if self._if_exits == 'fail':
                msg = "table_name {} is already exists!".format(self._table_name)
                logging.error(msg)
                raise Exception(msg)
            elif self._if_exits == "append":
                self.append()
            elif self._if_exits == "replace":
                self.replace()
        else:
            self.upload()
        sql = """select * from {} limit 100""".format(self._table_name)
        df = pd.read_sql_query(sql, self._engine)
        print(df)


if __name__ == '__main__':
    hive_uri = "hive://{username}:{password}@1{ip}:{port}/default"
    source_file = "~/Desktop/magic.csv"
    table_name = "test.test_upload_here_test_v1"
    location = "oss://{bucket_name}//{}/{}.parquet".format(table_name, table_name)
    hive_uploader = HiveUploader(source_file, table_name, location, hive_uri, if_exits="fail")
    hive_uploader.run()


全栈开发工程师,有工作需要可联系微信: taojian2009

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值