- 博客(369)
- 资源 (53)
- 问答 (5)
- 收藏
- 关注
原创 240903python 操作excel-读取head和内容
import pandas as pdCSV_PATH = 'magic.csv'df = pd.read_csv(CSV_PATH)print(df.columns)print(df.T)
2024-09-04 00:02:55 273
原创 240724 均衡化直方图
U 和 V 表示色度(Chrominance、缩写Chroma),即为色调和饱和度。# y通道 - Y 表示亮度(Luminance、缩写Luma),即为灰度值。
2024-08-27 15:50:32 191
原创 240826 计算电影推荐
通过前面几天的knn相关知识,来计算电影推荐。# 根据皮尔逊进行排序。# 生成电影评分列表。# 为给定用户生成电影推荐。# 打印推荐电影列表。
2024-08-26 20:55:10 853
原创 240723 knn电影推荐
通过前面两篇,所以对某一个人A推荐电影,就是找到这个人最类似的人B已经看过的电影,然后将电影推荐A。# 直接加载得分数据。
2024-08-26 20:49:08 348
原创 240722 knn 使用皮尔逊找到相似用户
计算所有相同评分电影的评分的平方和。# 提取两个用户都评分过的电影。# 计算相同评分的平方值和。# 都没有评分则是 0。# 计算数据集乘积之和。# 计算皮尔逊相关度。
2024-08-26 20:45:23 454
原创 240721 knn 计算用户1和用户2之间的评分-相关度
knn通过计算电影相关度,计算用户1和用户2的评分。# 提取用户1和用户2的评论过的电影。# 如果没有评分,得分为0。# 计算欧式距离分数。
2024-08-26 20:38:10 286
原创 240719 聚类算法的评价
评价kmean在集群的最佳数量, 我们迭代一系列的值, 找出其中的峰值的 性能。度量聚类算法的一个好方法是观察集群被分离的离散程度。
2024-08-24 11:42:57 428
原创 240717 聚类 kmean
k-means算法是最流行的聚类算法之一。这个算法常常利用数据的不同属性将输入数据划分。分组是使用最优化的技术实现的, 即让各组内的数据点与该组中心点的距离平方和最小。无监督学习是一种对不含标记的数据建立模型的机器学习范式。
2024-08-24 10:37:20 602
原创 240712 1 knn近邻算法和贝叶斯- 对比 -鸢尾花
print('bayes算法耗时:%s(ms)' %(int((b_time_end-b_time_start)*1000)))print('切割后的测试数据数量:%s,训练数据数量:%s' %(len(tst_data),len(trn_data)))print('创建的训练数据类别数量:%s,训练数据特征数量:%s' %(len(labels),len(traits)))print('knn算法耗时:%s(ms)' %(int((k_time_end-k_time_start)*1000)))
2024-08-14 23:38:32 758
原创 Python 10个机器算法
为了根据一个新对象的属性将其分类,每一个决策树有一个分类,称之为这个决策树“投票”给该分类。9 PCA, Principal Component Analysis)是一种常用的数据降维技术,旨在将一组可能相关的变量转换为一组线性不相关的变量,称为主成分,同时尽可能多地保留原始数据集的信息。8 使用 K – 均值算法来将一个数据归入一定数量的集群(假设有 k 个集群)的过程是简单的。4 SVM 将每个数据在N维空间中用点标出(N是你所有的特征总数),每个特征的值是一个坐标的值。# 创建KNN模型并拟合数据。
2024-08-14 11:52:53 505
原创 240709-视觉-kmean艺术画
====================3.打印的实现============================# ================4.像素值替换及结果展示=======================# ===================1.图像预处理=======================# ====================0.导入库=======================print("分类中心点:\n",center)print("标签:\n",label)
2024-07-17 16:42:02 151
原创 240707 求解数独
puzzle.show() #显示。puzzle = Sudoku(3, 3, board=puzzle) #初始化。solution = puzzle.solve() #求解。solution.show() #显示。#==================主程序=====================print("求解结果:")
2024-07-17 14:44:22 302
原创 240707 LBPH人脸识别
LBP 的主要思想是以当前点与其邻域像素的相对关系作为处理结果。print("置信度confidence=",confidence)print("对应的标签label=",label)# 给训练图像贴标签。
2024-07-17 13:51:22 231
原创 240705-视觉-haar检测人脸
==================5 标注人脸及显示=======================# ================2 加载分类器========================# =================3 人脸检测========================# ===============4 打印输出的实现=====================print("发现{0}个人脸!".format(len(faces)))print("其位置分别是:")
2024-07-17 11:25:53 157
原创 20240706 数字识别抗倾斜函数
=============抗扭斜函数=================#=============导入库=================#=============主程序=================
2024-07-15 07:24:01 284
原创 240704 手写数字的识别-svm
trainLabels = np.repeat(np.arange(10),8)[:,np.newaxis] #训练图像贴标签。TestLabels = np.repeat(np.arange(10),2)[:,np.newaxis] #测试图像贴标签。#=============getData函数,获取训练数据、测试数据及对应标签=================#=============SVM函数,构造svm模型、使用svm模型=================
2024-07-15 07:22:37 571
原创 240703 手写数字的识别-K近邻
==================3. 完成分类=======================# =================2. 待识别数据处理====================# ==============1. 训练数据处理==================#===============显示结果=====================# ================导入库===================print("5个最近邻居的距离: ", dist)
2024-07-11 16:26:30 564
原创 24-7-2 机器学习knn svm简单使用
===============2. 使用KNN算法=====================print("当前数可以判定为类型:", results[0][0].astype(int))# ===============2. SVM分类器=====================#===============3. 显示结果=====================print("距离当前点最近的3个邻居是:", neighbours)print("当前钻石等级:乙级")
2024-07-04 00:05:59 315
原创 24-7-1 knn手写数字的识别
装进array,形状(50,100,20,20),50行,100列,每个图像20*20大小。# 数据调整,将每个数字的尺寸由20*20调整为1*400(一行400个像素)# 将原始图像划分成独立的数字,每个数字大小20*20,共计5000个。# 【step1:预处理】读入文件、色彩空间转换。# 【step4:塑形为符合KNN的输入】# 【step3:拆分为训练集和测试集】# 【step2:拆分为独立数字】# 【step6:KNN工作】# 【step5:分配标签】# 【step7:验证结果】
2024-07-04 00:02:32 375
原创 24-6-30 以图搜图
========计算指定文件夹下的所有图像hash值===============# ================绘制结果===================#========以图搜图核心:找出最相似图像===============#========计算检索图像的hash值===============#========提取感知哈希值函数===============#==========构造计算汉明距离函数============通过对比哈希数值 来判断是否匹配。从左往右 相似度递减。
2024-07-01 23:53:41 626
原创 24-6-29 车牌分割
--------------将包围框按照x轴坐标值排序(自左向右排序)--------------# -------------遍历所有轮廓,寻找最小包围框F6------------------# --------------测试语句:查看各个字符-------------------# --------将字符的轮廓筛选出来F7-------------------#=============图像预处理===============# -------阈值处理(二值化)F3 -------
2024-07-01 22:58:36 441
原创 24-6-28 提取车牌
================显示提取车牌============================# ================滤波O7:中值滤波,去除噪声=======================# ===============二值化O4(阈值处理)==========================# ====================导入库======================# ================读取原始图像===================
2024-07-01 22:53:31 869
原创 24-6-26 手写数字的匹配
===============计算最佳匹配值及模板序号======================#===============计算识别结果======================#===============显示识别结果======================#==============准备数据========================#=============计算匹配值函数=====================#计算模板图像、待识别图像的模板匹配值。
2024-07-01 22:46:52 266
原创 24-6-27 视觉 自适应阈值
固定127 阈值 小于127设置为0 大于127 设置为255。# Otsu 方法会遍历所有可能阈值,从而找到最佳的阈值。
2024-06-28 17:30:50 151
原创 24-06-25 视觉-提取特定颜色区域
=============指定蓝色值的范围=============#=============指定绿色值的范围=============#=============指定红色值的范围=============# lower:图像中低于这个lower_red的值,值变为0。# upper:图像中高于这个upper_red的值,值变为0。#通过掩码控制的按位与,锁定蓝色区域。#通过掩码控制的按位与,锁定绿色区域。#通过掩码控制的按位与,锁定红色区域。#确定蓝色区域 -获取掩密码。# image:原图像。
2024-06-28 16:00:20 396
原创 240624 视觉 图片 信息隐藏与展示
cv2.imshow("watermark",watermark*255) #当前watermark内最大值为1。#============嵌入过程============#============提取过程============#============显示============#将水印内的255处理为1,以方便嵌入-切换为二值图。#将水印内的1处理为255以方便显示-切换为二值图。提取过程:将载体图像的最低有效位所构成的第。#读取原始载体图像的shape值。#从载体图像内,提取水印图像。
2024-06-26 17:09:12 312
原创 24-05-23 视觉-绘制图像的凸包
--------------提取zero轮廓,绘制凸包------------------# --------------提取one轮廓,绘制凸包------------------# --------------读取原始图像------------------# --------------显示凸包------------------
2024-06-24 00:07:18 236
10000套ppt+1000简历模板.rar
2020-03-06
rocket+acl+console.rar
2020-02-06
erlang_win64_22.0+rabbitmq3.8.2.rar
2020-01-07
微信小程序:开发入门及案例详解配-套源码-源代码
2019-07-29
微信小程序开发图解案例教程+微信小程序-开发入门及案例详解.rar
2019-07-29
rocketmq-all-4.5.1-bin-release.zip
2019-06-12
springboot+mybatis整合的demo在idea可运行
2019-03-16
阿里巴巴Java开发手册1.4最新版+阿里不止代码(如何成长)
2019-03-16
国标一级汉字(3755个,按拼音排序),国标二级汉字(3008个,按部首笔画排序)
2016-12-24
读写hdf5文件编程用户指南
2016-10-27
Open Broadcaster Software obs
2016-05-07
MySQL-server-5.6.19-1.el6.x86_64.rpm
2015-06-02
tomcat 集群用什么缓存更好,oscache或memcache
2013-06-06
ssh架构 在页面的对象id是空白,但是传到后台后id默认成0了?
2012-09-11
你想要生活的时代?
2012-06-08
java工作1年要达到什么程度? 51job上很多公司都写工作经验1年,结果投了没反应。
2011-05-02
j2ee的SSH网站如何用C优化
2010-10-03
TA创建的收藏夹 TA关注的收藏夹
TA关注的人