Given a m-by-n (0,1)-matrix, of all its submatrices of all 1’s which is the largest? By largest we mean that the submatrix has the most elements.
Input
The input contains multiple test cases. Each test case begins with m and n (1 ≤ m, n ≤ 2000) on line. Then come the elements of a (0,1)-matrix in row-major order on mlines each with n numbers. The input ends once EOF is met.
Output
For each test case, output one line containing the number of elements of the largest submatrix of all 1’s. If the given matrix is of all 0’s, output 0.
Sample Input
2 2 0 0 0 0 4 4 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0
Sample Output
0 4
(题意:求出一个最大全为1的子矩阵的面积。)
(思路:枚举每一行,用单调栈正序和倒序递增维护每一列的“高度”,用l和r数组记下能到达的列,取最大值即可。)
#include <iostream>
#include <cstdio>
using namespace std;
const int N = 2e3+10;
int h[N],l[N],r[N],sta[N],top;
int n,m;
int main(void)
{
while(~scanf("%d%d",&n,&m))
{
int x,ans=0;
for(int i=1;i<=m;i++) h[i]=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&x);
h[j]=x?h[j]+1:0;
}
//cout<<"-------------------"<<i<<endl;
top=0;
for(int k=1;k<=m;k++)
{
while(top>0&&h[sta[top]]>=h[k])
top--;
if(top==0) l[k]=1;
else l[k]=sta[top]+1;
sta[++top]=k;
}
top=0;
for(int k=m;k>0;k--)
{
while(top>0&&h[sta[top]]>=h[k])
top--;
if(top==0) r[k]=n;
else r[k]=sta[top]-1;
sta[++top]=k;
}
for(int k=1;k<=m;k++)
{
ans=max(ans,h[k]*(r[k]-l[k]+1));
// cout<<k<<" "<<h[k]<<" "<<l[k]<<" "<<r[k]<<endl;
}
}
printf("%d\n",ans);
}
}
本文介绍了一种求解最大全1子矩阵面积的方法,通过枚举每一行,使用单调栈正序和倒序递增维护每一列的高度,利用l和r数组记录可达列,最终获取最大值。
374

被折叠的 条评论
为什么被折叠?



