线性筛欧拉函数

首先欧拉函数的定义: 对正整数n,欧拉函数是小于n的正整数中与n互质的数的数目(φ(1)=1)。

欧拉函数的重要性质:

1.\varphi (p)=p-1,显然除了质数本身,其它数都不与它互质。

2.\varphi(p^k)=p^{k}-p^{k-1}=p^{k-1},对于p^{k},与他不互质的数只有p的倍数.如p,2p,3p,....p^k总共有p^(k-1)个,减去即可。

3.\varphi(p*q)=\varphi(p)*\varphi(q)(p与q互质)

4.\varphi(i*p_{j})=\varphi(i)*p_{j}。基于积性函数的性质,证明不会。

那么,我们就可以基于欧拉函数这些性质进行线性筛。当欧拉筛质数时,遇到质数就直接赋值,然后,再用当前筛出的质数处理一些合数(i*p_{j}).如果i中已有该质因子,可以再开个数组factor,factor[i]=p_{j}^{k},然后(i/factot[i])与(factor[i]*p_{j})肯定互质,这时利用性质3即可,也可以直接利用性质4;否则,利用性质3。

法1:

int prime[N],factor[N],cnt;
int phi[N];
void Init()
{
	phi[1]=1;
	for(int i=2;i<=N-10;i++)
	{
		if(!phi[i]) 
		{
			prime[cnt++]=i;
			factor[i]=i;
			phi[i]=i-1;
		}
		for(int j=0;j<cnt&&(ll)i*prime[j]<=N-10;j++)
		{
			
			if(i%prime[j])
			{
				factor[i*prime[j]]=prime[j];
				phi[i*prime[j]]=phi[i]*(prime[j]-1);			
			}
			else
			{
				factor[i*prime[j]]=factor[i]*prime[j];
				phi[i*prime[j]]=phi[factor[i]*prime[j]]*phi[i/factor[i]];
				break;
			}
		}
	}
	
}

法2:

void Init1()
{
	phi[1]=1;
	cnt=0;
	for(int i=2;i<=N-10;i++)
	{
		if(!phi[i])
		{
			prime[cnt++]=i;
			phi[i]=i-1;	
		} 
		for(int j=0;j<cnt&&(ll)i*prime[j]<=N-10;j++)
		{
			if(i%prime[j])
			{
				phi[i*prime[j]]=phi[i]*(prime[j]-1);
			}
			else
			{
				phi[i*prime[j]]=phi[i]*prime[j];
				break;
			}
		}	
	}	
}

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值