
PyTorch 深度学习实践
文章平均质量分 71
赵登峰-人民大学
中国人民大学
展开
-
PyTorch 深度学习实践 第11讲
第11讲 卷积神经网络(高级篇)源代码B站 刘二大人,传送门PyTorch深度学习实践——卷积神经网络(高级篇)视频中截图:说明:Inception Moudel1、卷积核超参数选择困难,自动找到卷积的最佳组合。2、1x1卷积核,不同通道的信息融合。代码说明:1、先是1个卷积层(conv,maxpooling,relu),然后inceptionA模块,接下来又是一个卷积层(conv,mp,relu),然后inceptionA模块,最后一个全连接层(fc)。 ...原创 2020-11-14 18:35:44 · 37533 阅读 · 72 评论 -
PyTorch 深度学习实践 第10讲
第9讲 卷积神经网络(基础篇)源代码B站 刘二大人,传送门PyTorch深度学习实践——卷积神经网络(基础篇)视频中截图:说明 1、每一个卷积核它的通道数量要求和输入通道是一样的。这种卷积核的总数有多少个和你输出通道的数量是一样的。 2、卷积(convolution)后,C(Channels)变,W(width)和H(Height)可变可不变。subsampling(或pooling)后,C不变,W和H变。 3、卷积层:保留图像的空间信息。代...原创 2020-11-14 15:12:40 · 38034 阅读 · 51 评论 -
PyTorch 深度学习实践 第9讲
第9讲 多分类问题源代码B站 刘二大人,传送门PyTorch深度学习实践——多分类问题视频中截图说明: 1、softmax的输入不需要再做非线性变换,也就是说softmax之前不再需要激活函数(relu) 2、y的标签编码方式是one-hot。我对one-hot的理解是只有一位非零(不一定非的是1),其他位为0 3、多分类问题,标签y的类型是LongTensor。比如说0-9分类问题,如果y = torch.LongTensor([3])...原创 2020-11-14 11:15:05 · 36165 阅读 · 138 评论 -
PyTorch 深度学习实践 第8讲
第8讲 加载数据集源代码B站 刘二大人,传送门PyTorch深度学习实践——加载数据集说明:1、DataSet 是抽象类,不能实例化对象,主要是用于构造我们的数据集 2、DataLoader 需要获取DataSet提供的索引[i]和len;用来帮助我们加载数据,比如说做shuffle(提高数据集的随机性),batch_size,能拿出Mini-Batch进行训练。它帮我们自动完成这些工作。DataLoader可实例化对象。代码说明:1、需要mini_batch...原创 2020-11-14 09:46:38 · 37726 阅读 · 135 评论 -
PyTorch 深度学习实践 第7讲
第7讲 处理多维特征的输入源代码B站 刘二大人,传送门PyTorch深度学习实践——处理多维特征的输入视频中截图说明:1、乘的权重(w)都一样,加的偏置(b)也一样,只有行向量是不同的。b变成矩阵时使用广播机制。 2、学习能力越强,有可能会把输入样本中噪声的规律也学到。我们要学习数据本身真实数据的规律,学习能力要有泛化能力。import numpy as npimport torchimport matplotlib.pyplot as plt# p...原创 2020-11-13 21:24:37 · 33563 阅读 · 115 评论 -
PyTorch 深度学习实践 第6讲
第6讲 逻辑斯蒂回归源代码B站 刘二大人,传送门PyTorch深度学习实践——逻辑斯蒂回归视频中截图说明: 逻辑斯蒂回归和线性模型的明显区别是在线性模型的后面,添加了激活函数(非线性变换)说明:预测与标签越接近,BCE损失越小。代码说明:1、视频中代码F.sigmoid(self.linear(x))会引发warning,此处更改为torch.sigmoid(self.linear(x))import torch# import torch.nn.functi...原创 2020-11-13 20:23:57 · 26474 阅读 · 22 评论 -
PyTorch 深度学习实践 第5讲
第5讲 用PyTorch实现线性回归源代码B站 刘二大人,传送门用PyTorch实现线性回归PyTorch Fashion(风格)1、prepare dataset2、design model using Class # 目的是计算y hat3、Construct loss and optimizer (using PyTorch API)4、Training cycle (forward,backward,update)代码说明:1、Module实现了魔法函数_...原创 2020-11-13 17:21:12 · 33788 阅读 · 56 评论 -
PyTorch 深度学习实践 第4讲
第4讲 反向传播back propagation源代码B站 刘二大人,传送门PyTroch 深度学习实践——反向传播import torchx_data = [1.0, 2.0, 3.0]y_data = [2.0, 4.0, 6.0]w = torch.Tensor([1.0]) # w的初值为0.1w.requires_grad = True #需要计算梯度def forward(x): return x*w #w是一个Tensordef loss(x, ...原创 2020-11-12 14:39:12 · 33378 阅读 · 28 评论 -
PyTorch 深度学习实践 第3讲
第3讲 梯度下降法源代码B站 刘二大人,传送门PyTorch 深度学习实践 梯度下降法import matplotlib.pyplot as pltx_data = [1.0, 2.0, 3.0]y_data = [2.0, 4.0, 6.0]# initial guess of weight w = 1.0# define the model linear model y = w*xdef forward(x): return x*w#define the ...原创 2020-11-12 09:51:29 · 29558 阅读 · 27 评论 -
PyTorch 深度学习实践 第2讲
第2讲 linear_model 源代码import numpy as npimport matplotlib.pyplot as pltx_data = [1.0, 2.0, 3.0]y_data = [2.0, 4.0, 6.0]def forward(x): return x*wdef loss(x, y): y_pred = forward(x) return (y_pred - y)**2w_list = []mse_list = []..原创 2020-11-11 17:34:06 · 59713 阅读 · 25 评论