算法中的数学
文章平均质量分 92
机器学习、深度学习中的数学知识
虾米小馄饨
算法工程师
展开
-
汉明距离、汉明损失详解及代码(python)
用具体的图示+代码,帮你理解汉明距离(Hamming distance)、汉明损失(Hamming loss)。原创 2022-05-25 21:54:51 · 9048 阅读 · 3 评论 -
如何理解「最大似然估计」?参数估计、似然函数、最大似然估计
最大似然估计,就是寻找一组模型参数,使得观测到现有样本出现的概率最大,即这组模型参数,可以使模型拟合的结果最接近实际数据分布。原创 2022-05-04 19:19:08 · 4457 阅读 · 0 评论 -
OpenCV 中的矩(moments)和 Hu不变矩(HuMoments)
图像矩通常用于分析、描述分割后的形状。原创 2022-01-19 21:43:22 · 7956 阅读 · 0 评论 -
理解「交叉熵」损失函数(包含自信息、信息熵、KL散度、交叉熵概念整理)
KL散度、交叉熵可以用于衡量模型的“损失”。要深入理解KL散度和交叉熵,首先要从信息论中的基础概念入手。原创 2021-10-09 22:12:27 · 6371 阅读 · 6 评论 -
10行代码,带你理解自然底数e、自然指数ln
我们知道,e是一种常数,e和pi类似,都是一种被计算出来的常数,在实际中具有非常广泛的应用。基于自然底数e,我们常常会用到自然指数exp(e),自然对数ln(x),但你知道e是怎么来的吗?原创 2021-06-15 22:34:08 · 7969 阅读 · 25 评论 -
50行代码,带你理解梯度下降法(Gradient Descent Method)
梯度gradf(x,y)=∂f∂xi+∂f∂yjgrad f(x,y)=\frac{\partial{f}}{\partial{x}}\bold{i}+\frac{\partial{f}}{\partial{y}}\bold{j}gradf(x,y)=∂x∂fi+∂y∂fj梯度下降法求函数的最小值:1import numpy as npimport matplotlib.pyplot as pltfrom matplotlib import cmfrom mpl_toolkits.mpl原创 2021-06-04 18:17:47 · 3492 阅读 · 26 评论 -
图解匈牙利算法(含python代码)
文章目录算法原理算法步骤算法实现算法原理匈牙利算法的问题描述:https://brc2.com/the-algorithm-workshop/James Munkre在1950年代提出一种的分配问题的解法,时间复杂度在多项式级。算法步骤以下6步算法是原始Munkres分配算法(有时称为匈牙利算法)的修改形式。该算法描述了通过对零加星标和底注以及覆盖和揭示行和列来对二维矩阵进行手动操作的过程。这是因为,在出版时(1957年),很少有人可以使用计算机,而且算法是手动执行的。步骤0: 创建一个称为原创 2021-05-18 21:05:19 · 12182 阅读 · 2 评论 -
马氏距离详解(数学原理、适用场景、应用示例代码)
看了很多关于马氏距离(Mahalanobis Distance)的介绍,但是总感觉有一些地方不太清晰,所以结合数学公式、机器学习中的应用案例,从头梳理一下。马氏距离实际上是欧氏距离在多变量下的“加强版”,用于测量点(向量)与分布之间的距离。原创 2021-04-23 16:19:35 · 41366 阅读 · 8 评论 -
协方差、样本协方差、协方差矩阵、相关系数详解(python代码)
对于一个随机变量的分布特征,可以由均值、方差、标准差等进行描述。而对于两个随机变量的情况,有协方差和相关系数来描述两个随机变量的相互关系。本文主要参考概率论与数理统计的教科书,整理了协方差、样本协方差、协方差矩阵、相关系数的概念解释和代码。协方差(covariance)协方差的概念来自概率论,实际应用中的样本协方差则与统计学概念有关。协方差反应了随机变量X、YX、YX、Y之间“协同”变化的关系。也可以说,协方差在某种意义上给出了两个变量线性相关性的强度以及这些变量的尺度。原创 2021-04-20 16:09:03 · 26655 阅读 · 1 评论 -
欧式距离、曼哈顿距离、余弦相似度(python代码)
欧式距离/欧几里得度量(Euclidean Distance)欧氏距离就是两点之间最短的直线距离。(1)二维空间里A、B两点间的欧式距离:SAB=(xA−xB)2+(yA−yB)2S_{AB}= \sqrt{\def\bar#1{#1^2} \bar{(x_A-x_B)}+\def\bar#1{#1^2} \bar{(y_A-y_B)}}SAB=(xA−xB)2+(yA−yB)2(2)推广到nnn维空间内的两点P、QP、QP、Q:P=(x1P,x2P,...,xnP),Q=(x1Q原创 2021-04-18 23:02:27 · 6740 阅读 · 2 评论