PyTorch
文章平均质量分 87
梳理PyTorch常用代码片段、小技巧、常见错误等。
虾米小馄饨
算法工程师
展开
-
图解 RoIAlign 以及在 PyTorch 中的使用(含代码示例)
RoIAlign其实就是“精确版”的RoI Pooling。用于将任意尺寸的特征图,都转换为具有固定尺寸的小特征图。原创 2021-11-08 22:02:27 · 19012 阅读 · 10 评论 -
Pytorch+Tensorboard混淆矩阵可视化
混淆矩阵是分类任务常用的一种评估方法。尤其是在类别数量不平衡的情况下,相比accuracy,混淆矩阵对哪个类被错误分类具有更直观的解释。在平时做简单的数据实验时,可以仅用from sklearn.metrics import plot_confusion_matrix或者seaborn对混淆矩阵进行可视化。但是在深度学习训练模型的过程中,在`tensorboard`中可视化混淆矩阵会更方便结果记录和对照。原创 2021-03-10 10:42:29 · 5973 阅读 · 7 评论 -
PyTorch模型部署:pth转onnx跨框架部署详解+代码
如果要在每个平台上实现所有模型的框架,会极大增加环境的复杂性,优化不同框架和硬件的所有组合非常耗时。原创 2021-01-20 22:19:08 · 6509 阅读 · 2 评论