DeepFM
CTR预估是推荐系统中根据用户特征对item进行点击率预测的一个任务。而CTR任务中面临的特征往往具有相关性,且经过one-hot编码后具有稀疏性。
FM就是为处理这种稀疏的相关性而提出的。为了处理相关性,FM在一阶特征的基础上引入二阶特征项;而由于特征稀疏(尤其是二阶项组合,如所有xi*xj中0所占比例应比所有xi中0所占比例更高)导致二阶项组合大部分为0,这时二阶项系数矩阵必定存在大量的参数冗余,FM采用矩阵分解的方式来减少冗余参数。其实就是试图将每个one-hot编码前的原始特征embedding成一个向量,计算每两个向量之间内积和。FM能处理一阶、二阶特征,而不能处理更高阶特征。
DeepFM中FM Component与FM完全相同。与FM不同的是,DeepFM引入了一个DNN Component,从而能够处理更复杂的特征交互。DNN Component的embedding层参数与FM component共享。DeepFM不需要对embedding层进行预训练,是一个end-to-end的架构。