从握手到工具:一文彻底吃透 MCP 协议与 stdio 传输机制

目录

为什么要了解 MCP 与 stdio?

MCP 协议全景图

stdio 传输规则速查表

实战:手动握手 + 拉取工具列表

启动服务器

发送 initialize 请求

接收握手响应

发送 initialized 通知

查询工具列表

stdio vs SSE 传输对比

常见问题 FAQ

延伸阅读与工具

结束语


为什么要了解 MCP 与 stdio?

过去一年,大模型从“会聊天”进化到“会动手”:读文件、调 API、跑脚本。然而各家厂商的插件接口五花八门,开发者必须写 N 套适配器。  


Anthropic 在 2024 年 11 月发布的 Model Context Protocol(MCP) 把“插件”抽象成了统一的 资源 / 工具 / 提示 三大概念,并提供 stdio、HTTP+SSE(后来改成了Streamable HTTP) 两种传输机制。  
其中 stdio 传输 最简单——只需启动一个子进程,用标准输入/输出就能完成所有 JSON-RPC 通信,非常适合本地 CLI 工具、脚本或嵌入式 Agent。

MCP 协议全景图

MCP 架构图如下:

- Client:AI Agent、IDE、聊天机器人……  
- Server:暴露文件、数据库、REST API 等能力的轻量进程  
- Transport:本文主角 —— stdio(标准输入/输出)  
- Message:JSON-RPC 2.0 规范,分 Request / Response / Notification 三类

stdio 传输规则速查表

维度约定
编码UTF-8
每条消息单行 JSON,以 \n 结尾
方向Client→Server 走 stdin
错误stderr 可打印日志,但不参与协议
并发支持多请求并行,靠 id 字段匹配响应

传输过程入下图所示:

 

实战:手动握手 + 拉取工具列表

下面用“纯终端”方式演示一次完整会话,不依赖任何 SDK。

启动服务器

我们采用Cangjie Magic所提供的官方示例,有关详情参考:调试基于Cangjie Magic的MCP服务器指南-CSDN博客

启动Cangjie Magic的MCP服务器的命令行是:

cjpm run --skip-build --name magic.examples.mcp_server

此时进程阻塞,等待 stdin输入
 

发送 initialize 请求

在终端(或 使用echo)向该进程 stdin 写入:

{"jsonrpc":"2.0","id":1,"method":"initialize","params":{"protocolVersion":"2024-11-05","capabilities":{},"clientInfo":{"name":"demo-cli","version":"1.0"}}}

注意:必须带换行符 `\n`。

接收握手响应

服务器立即在 stdout 返回:

{"jsonrpc":"2.0","id":0,"result":{"protocolVersion":"2024-11-05","capabilities":{"prompts":{"listChanged":false},"resources":{"subscribe":false,"listChanged":false},"tools":{"listChanged":false}},"serverInfo":{"name":"Cangjie Magic Agent Server","version":"0.1"}}}

发送 initialized 通知

客户端必须再发一条“我已初始化完毕”的无回复通知:

{"jsonrpc":"2.0","method":"notifications/initialized"}

查询工具列表

接着就可以拉取工具:

{"jsonrpc":"2.0","id":2,"method":"tools/list","params":{}}

服务器返回(示例):

{"jsonrpc":"2.0","id":2,"result":{"tools":[{"name":"add","description":"Add two numbers","inputSchema":{"type":"object","properties":{"a":{"type":"integer"},"b":{"type":"integer"}},"required":["a","b"]}},{"name":"multiply","description":"Multiply two numbers","inputSchema":{"type":"object","properties":{"a":{"type":"integer"},"b":{"type":"integer"}},"required":["a","b"]}},{"name":"Calculator","description":"小学算术计算器","inputSchema":{"type":"object","properties":{"question":{"type":"string","description":"The input question"}},"required":["question"]}}]}}

至此,stdio 通道已完全可用,后续可继续发送 `tools/call`、`resources/list` 等请求。

stdio vs SSE 传输对比

场景stdioHTTP+SSE
启动方式本地子进程远端 URL
防火墙无要求需开放端口
并发连接单进程单连接可多客户端
适用对象CLI、桌面插件SaaS、云函数
演示难度⭐(简单)⭐⭐⭐(需 CORS、鉴权)

常见问题 FAQ

1. 一定要发 `initialized` 吗?  
   是的,否则服务器不会接受后续业务请求。

2. 可以一次发送多条请求吗?
   可以,只要每条 JSON 独占一行,服务器按 `id` 异步回复。

延伸阅读与工具

- 官方协议文档
- 中文翻译  

结束语

如果本文帮到你,欢迎转发/收藏,也欢迎在评论区贴出你用 MCP 做出的酷炫 Agent!

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化训练,到执行分类及结果优化的完整流程,并介绍了精度评价通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置结果后处理环节,充分利用ENVI Modeler进行自动化建模参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略效果评估体系,涵盖当前企业传播面临的预算、资源、内容效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放GEO优化,提升品牌在AI搜索中的权威性可见性;④通过数据驱动评估体系量化品牌影响力销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析工具指南进行系统学习,重点关注媒体适配性策略GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神一样的老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值