知识积累
一朝有悟,臻至化境
这个作者很懒,什么都没留下…
展开
-
解决虚拟机克隆后IP和命名冲突问题
解决虚拟机克隆后IP和命名冲突问题原创 2023-09-05 21:00:17 · 989 阅读 · 0 评论 -
张量分解--CP、Tucker分解
主要简要介绍了一下CP分解与Tucker分解的基本概念。原创 2023-08-26 09:32:33 · 2417 阅读 · 2 评论 -
命令行参数
介绍一下命令行参数的基本使用方法。原创 2023-08-21 20:04:40 · 480 阅读 · 0 评论 -
七夕前的爱心代码!
七夕前爱心代码!原创 2023-08-20 16:09:24 · 181 阅读 · 0 评论 -
conda创建虚拟环境
总结一下conda的基本用法!原创 2023-08-15 11:20:47 · 1947 阅读 · 0 评论 -
正则表达式
通过使用正则表达式,可以在文本处理、数据清洗、模式匹配等方面发挥重要作用,提供强大的文本处理能力。正则表达式由各种字符和特殊符号组成,这些字符和符号形成了一个模式,用于定义字符串的匹配规则。例如,对于字符串 "Smith, John Mr.",该模式将匹配 "Mr." 这个称号部分。其中,"Mr" 是由字母组成的单词,并且后面跟着一个点号。它是一种特定语法规则的文本字符串,用于匹配、搜索和操作符合特定模式的文本数据。:表示匹配一个点号(.)。:表示一个正则表达式子组,用于匹配由字母组成的连续字符串。原创 2023-07-20 09:08:07 · 224 阅读 · 0 评论 -
extract()用法
方法会根据指定的模式在每个字符串中查找匹配的子字符串,并将其提取出来。提取的结果可以是单个字符串或多个字符串(如果有多个命名分组)。是 Pandas 中字符串处理功能的一部分,用于从字符串中提取匹配的子字符串。原创 2023-07-20 09:08:27 · 928 阅读 · 0 评论 -
concat()用法
是 Pandas 库中的一个函数,用于将多个 Pandas 对象(如 Series、DataFrame)沿指定轴进行连接操作。函数将根据指定的轴和连接方式,将多个对象进行连接,并返回一个新的 Pandas 对象。原创 2023-07-20 09:07:41 · 4943 阅读 · 0 评论 -
get_dummies()用法
是 Pandas 库中的一个函数,用于进行One-hot编码,将分类变量转换为虚拟变量。函数将返回一个新的 DataFrame 对象,其中包含转换后的虚拟变量。原创 2023-07-19 17:34:53 · 4544 阅读 · 0 评论 -
one-hot编码
例如,假设有一个分类特征"颜色",包含三个类别:"红色"、"绿色"和"蓝色"。使用One-hot编码将该特征转换为三个二进制特征:"颜色_红色"、"颜色_绿色"和"颜色_蓝色"。在One-hot编码中,对于具有n个不同取值的分类特征,将其转换为n个二进制特征,每个特征表示一个类别。对于原始特征中的每个样本,只有一个二进制特征为1,表示该样本属于对应的类别,其他特征均为0。在这个例子中,原始的"颜色"特征被转换为了三个二进制特征,每个特征代表一个类别。对于每个样本,只有对应类别的特征为1,其他特征为0。原创 2023-07-19 17:25:45 · 101 阅读 · 0 评论 -
lbl.transform()用法
方法,我们可以将分类特征转换为数值编码,以便机器学习算法能够处理这些特征。这种数值编码常用于将离散的类别数据转换为数值表示,从而为模型提供可解释和可计算的输入。类中的一个方法,用于对数据进行拟合(fit)和转换(transform)的组合操作。它常用于将分类特征转换为数值编码。方法会在内部拟合数据并对其进行转换,将原始数据转换为数值编码。它会为每个唯一值分配一个整数标签,并返回转换后的结果。输出结果是对原始数据进行数值编码后的结果。在上述示例中,我们首先创建一个。原创 2023-07-19 16:51:34 · 596 阅读 · 0 评论 -
astype()用法
是 Pandas 中的一个方法,用于将 Series 或 DataFrame 中的数据转换为指定的数据类型。方法将返回一个新的 Series 或 DataFrame 对象,其中数据类型已经被转换为指定的类型。原创 2023-07-19 16:45:10 · 4203 阅读 · 0 评论 -
zip()用法
三个列表中对应位置的元素打包成元组,并返回一个zip对象。通过遍历zip对象,我们可以逐个获取打包后的元组并进行进一步的操作。函数会逐个从每个可迭代对象中取出对应位置的元素,并将这些元素打包成元组。如果可迭代对象的长度不一致,则以。对象,可以获取打包后的元组,用于进一步处理数据或进行迭代操作。是Python内置函数之一,用于将。,并返回一个可迭代的zip对象。,超出部分的元素将被忽略。原创 2023-07-19 16:11:28 · 164 阅读 · 0 评论 -
dict()用法
是Python内置函数之一,用于创建一个新的字典对象。它可以从不同类型的可迭代对象或关键字参数中生成字典。原创 2023-07-19 16:17:04 · 437 阅读 · 0 评论 -
map()用法
方法常用于对Series对象的每个元素进行转换或映射操作,例如将某个范围的数值映射到离散的类别,或者对字符串进行清洗和标准化。是Pandas Series对象的一个方法,用于对Series中的每个元素应用一个映射函数,并返回一个新的Series对象。中的每个元素转换为首字母大写的格式,并返回一个新的Series对象。输出结果将是首字母大写的水果名称列表。:可以是一个字典、函数或可迭代对象。用于指定映射关系或转换规则。:可选参数,用于指定处理缺失值(NaN)的方式。方法使用一个lambda函数将列表。原创 2023-07-19 14:57:25 · 91 阅读 · 0 评论 -
unique()最简单直白全面的介绍
是Pandas中的一个函数,用于获取Series或DataFrame中的唯一值。它返回一个包含Series或DataFrame中唯一值的数组,按照它们在原始数据中的出现顺序排列。中的唯一值,并返回一个包含这些唯一值的数组。输出结果将是一个按照唯一值在原始数据中的出现顺序排列的数组。函数常用于获取离散变量的唯一值列表,或从某列中提取唯一的类别或标签。原创 2023-07-19 14:26:58 · 2029 阅读 · 0 评论 -
value_counts()
是Pandas中的一个函数,用于计算一个Series中每个唯一值的频数。它返回一个新的Series对象,其中索引是唯一值,而值是对应的频数。函数常用于对离散变量的统计分析,如计算每个类别的频数、查找最常出现的类别或进行数据的初步探索。中每个唯一值的频数,并返回一个新的Series对象。,则排除缺失值(NaN)并计算非缺失值的频数。参数,则将数值数据分箱,并计算每个箱子的频数。,则返回频数的相对频率,而不是绝对频数。,则包括缺失值并计算缺失值的频数。,则按频数进行排序。,则按频数升序排序。原创 2023-07-19 14:20:42 · 1906 阅读 · 0 评论 -
pd.cut()用法
指定分箱区间的闭合方式。默认为True,表示右闭合(包含右边界),False表示左闭合(不包含右边界)。:指定分箱后每个箱子的标签。可以是一个列表或数组,用于标识每个分箱区间的名称或类别。:指定是否将最小值包含在第一个箱子中。默认为False,表示不包含最小值。:要进行分箱操作的数据。可以是一维的Series对象或NumPy数组。可以传递整数、序列或标量。:指定分箱边界的精度。默认为0,表示保留整数精度。原创 2023-07-19 12:00:48 · 984 阅读 · 0 评论