西瓜书
文章平均质量分 91
一朝有悟,臻至化境
这个作者很懒,什么都没留下…
展开
-
吃瓜教程-Task05
支持向量机学习。原创 2023-08-05 22:47:54 · 1336 阅读 · 0 评论 -
吃瓜教程-Task04
主要介绍了神经网络的相关知识。原创 2023-08-02 17:22:18 · 654 阅读 · 0 评论 -
吃瓜教程-Task03
比如说,如果我们用一个人的身份证号来预测他的身高,虽然按照身份证号进行划分可以得到完全纯净的子集(每个人的身份证号都不同,所以每个子集中只有一个样本),信息增益也很大,但显然这样的模型没有任何泛化能力,对新的未知样本的预测能力也非常差。相反,如果一个节点的样本均匀地分布在各个类别中,那么这个节点的Gini系数就是最大的(对于二分类问题,最大的Gini系数是0.5)。比如,假设你在建立一个预测是否喜欢阅读的决策树,有两个人,他们的属性(年龄,性别,职业等)都完全相同,但一个人喜欢阅读,另一个人不喜欢。原创 2023-07-30 23:10:08 · 282 阅读 · 0 评论 -
吃瓜教程-Task02
其中,x是输入的实数,exp表示自然指数函数(e的x次幂),S(x)是Sigmod函数的输出。Sigmod函数的特点是在x接近0时,输出值接近0.5,而在x趋向正无穷大时,输出值接近1,而在x趋向负无穷大时,输出值接近0。厄米矩阵(Hermitian Matrix),也称为自伴随矩阵(Self-adjoint Matrix),是一种特殊的方阵(即行数等于列数的矩阵)。牛顿法每次迭代时需要求解海森矩阵的逆矩阵,该步骤的计算量很大,所以将求解海森矩阵的逆矩阵改成求解计算量更低的近似逆矩阵,称为拟牛顿法。原创 2023-07-25 10:14:10 · 673 阅读 · 0 评论 -
吃瓜教程-Task01
在研究对比不同算法的泛化性能时,我们用测试 集上的判别效果来估计模型在实际使用时的泛化能力,而把训练数据另外划分为训练集和验证集,基于验证集上的性能来进行模型选择和调参.在数据量较少时,适合自助法,而在数据量足够时,留出法和交叉验证法更常用一些。研究如何通过计算的手段,利用经验来改善系统自身的性能。为步长,则实际要评估的候选参数值有 5个,最终是从这5。——数据集的划分尽可能保持数据分布的一致性。反映事件或对象在某方面的表现或性质的事项。分类错误的样本数占样本总数的比例。为因样本划分不同 引入的差别,k。原创 2023-07-20 20:32:32 · 351 阅读 · 0 评论