【笔试强训day20】

目录

第一题:经此一役小红所向无敌

题目描述

输入描述:

输出描述:

输入

输出

说明

第二题:连续子数组的最大和 

输入描述:

输出描述:

输入:

输出:

说明:

第三题:非对称之美 

题目描述

输入描述:

输出描述:

输入

输出


第一题:经此一役小红所向无敌

题目链接:登录—专业IT笔试面试备考平台_牛客网

题目描述

经过重重困难,对立和光终于来到魔王城,和最终的大魔王——小红进行决战。

已知小红的血量是 10^999999999 。
对立的攻击力是 a ,血量是 h 。
光的攻击力是 b ,血量是 k 。

每回合光先对小红发起攻击,然后对立对小红发起攻击,然后小红展开幻术,令光和对立同时互相攻击。
每次攻击后,受击者的血量会减掉攻击者的攻击力。
当光和对立其中一人死亡后,另一人会悲痛欲绝,对小红发出自己攻击力*10的伤害的大招,然后自杀。(若两人同时死亡,则两人都无法发出大招)

小红想知道,弱小的光和对立,她们能对自己造成多少点伤害?

输入描述:

一行 4 个正整数 a , h , b , k ,用空格隔开。

1≤a,b,h,k≤10^9

输出描述:

一个正整数,代表小红受到的伤害。

示例1

输入

2 3 1 3

输出

26

说明

第一回合,小红受到了对立和光的攻击,并让她们互相攻击。第一回合结束时,小红共受到 3 点伤害。这时对立血量为 2 ,光的血量为 1 。
第二回合,小红受到了对立和光的攻击,并让她们互相攻击。这时对立血量为 1 ,光的血量为 0 死亡。对立放出大招后自杀。本回合小红共受到 23 点伤害。
小红受到的总伤害为 3+23=26 。

这题本质上也是一道模拟题。但是暴力的模拟的话,可能会超时,因此可以找到一些规律来简化。 一个回合为光和对立分别对小红进行攻击一次,然后光和对立相互伤害,对立攻击光一次,光也会对对立进行一次攻击。通过回合数就可以计算出他们对小红的伤害。

1)计算互相伤害的回合数。计算方法就是min(h/b, k/ a)

2)计算互相攻击后光和对立的剩余血量。

3)如果光和对立的血量都大于0,那么还可以再进行一轮互相攻击。

4)判断时候触发大招。

最后需要注意数据范围。

#include <iostream>

using namespace std;
typedef long long LL;

int main()
{
    LL a, h, b, k;
    cin >> a >> h >> b >> k;
    //1.计算相互攻击回合数
    LL n = min(h / b, k / a);
    //计算总伤害
    LL ans = 0;
    ans += n * (a + b);
    //2.计算剩余血量
    h = h - n * b;
    k = k - n * a;
    //判断血量是否都大于零
    if(h > 0 && k > 0)
    {
        //如果都还活着,那么还可以进行一轮攻击
        ans += a + b;
        h -= b;
        k -= a;
    }
    //走到这,不可能都还活着了
    //判断是否触发大招
    if(h > 0) ans += a * 10;
    if(k > 0) ans += b * 10;
    
    cout << ans << endl;
    
    return 0;
}

第二题:连续子数组的最大和 

题目链接:连续子数组最大和_牛客题霸_牛客网

输入描述:

第一行为一个正整数 𝑛 n ,代表数组的长度。 1≤𝑛≤2∗10^5

第二行为 𝑛 个整数 𝑎𝑖,用空格隔开,代表数组中的每一个数。 ∣𝑎𝑖∣≤10^2

输出描述:

连续子数组的最大之和。

示例1

输入:

8
1 -2 3 10 -4 7 2 -5

输出:

18

说明:

经分析可知,输入数组的子数组[3,10,-4,7,2]可以求得最大和为18      

这是一道很典型的线性dp问题。

动态规划五部曲:

1)状态表示

以 i 位置为结尾的所有子数组中,最大和是多少

2)推导状态转移方程

根据上图,我们可以看到,对于 i 位置,它可以独立成一个子数组,那么它的最大和就是arr[ i ]。当然,i 也可以和前面的结合形成子数组,它可能和前面的一个元素结合,也可能两个三个甚至全部元素结合形成子数组,在那么多的情况中,只取以i - 1位置为结尾的子数组最大和,而这个最大和正好是存放在dp[i - 1]中。所以最大和就是dp[i - 1] + arr[i]。以上这两种情况,取最大的即可。所以状态转移方程为:

dp [ i ] = max( dp[ i - 1] + arr[ i ] , arr [ i ] )。

3)初始化

为了防止越界,dp表中从下标为1的位置开始填,那么必然就存在一个偏移的问题,即数组arr和dp表的下标是不同的,相差1,所以在返回去取arr中的元素时,下标要减1.

4)填表顺序

根据依赖关系,需要从左往右填。

5)返回值 

返回的是dp表中最大的值,而不是最后一个值。因为取到最大和时,并不一定是以最后一个元素为结尾。

#include <iostream>
#include <vector>
using namespace std;

const int N = 2e5 + 10;

//创建dp表
int dp[N];

int main() 
{
    int n;
    cin >> n;
    vector<int> arr(n);
    for(int i = 0; i < n; i++) cin >> arr[i];

    //填dp表
    int ans = -0x3f3f3f3f;
    for(int i = 1; i <= n; i++)
    {
        dp[i] = max(dp[i - 1] + arr[i - 1], arr[i - 1]);
        ans = max(ans, dp[i]);
    }
    cout << ans << endl;

    return 0;
}

第三题:非对称之美 

题目链接:登录—专业IT笔试面试备考平台_牛客网

题目描述

给出一个字符串,求最长非回文子字符串的长度

输入描述:

在一行中给出一个字符串 s,1≤∣s∣≤10^7

输出描述:

一个整数
示例1

输入

meow

输出

4

这道题可以说是找规律题,直到了它的规律就很好做,不知道的话写起来就很难受。

1)如果一个字符串是回文串(如上图字符串1),那么随便去掉它的最左侧字符或者最右侧字符,剩下的连续的子串就不是回文了,因为回文串原本是中心对称的,但是去掉一个元素之后就破坏了这种对称,所以就不是回文了。那么此时总长度 - 1就是最长非回文字符串的长度。

2)如果一个字符串它本身就不是回文串,那么最长非回文串就是它自己了。

3)有一个特例,就是上图中的字符串2。它本身就是回文串,而且在删掉任意元素后也还是回文串,因此我们需要对这种情况进行特殊处理。如果遇到这种情况,最长非回文字符串的长度就是0。

#include <iostream>
#include <string>

using namespace std;

string s;

//求最长非回文子字符串的长度
int func()
{
    int n = s.size();
    //1.判断是否是特例
    bool flag = true;
    for(int i = 1; i < n; i++)
    {
        if(s[i] != s[0])
        {
            flag = false;
            break;
        }
    }
    if(flag == true) return 0;
    //2.判断字符串本身是不是回文串
    flag = true;
    int left = 0, right = n - 1;
    while(left < right)
    {
        if(s[left] == s[right])
        {
            left++;
            right--;
        }
        else
        {
            flag = false;
            break;
        }
    }
    if(flag == true) return n - 1;
    else return n;
}
int main()
{
    cin >> s;
    cout << func() << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值