文章目录
提示:以下是本篇文章正文内容
一、题目
给定一个长度为 n的整数数列,请你计算数列中的逆序对的数量。
逆序对的定义如下:对于数列的第 i个和第 j个元素,如果满足 i<j且 a[i]>a[j],则其为一个逆序对;否则不是。
输入格式
第一行包含整数 n,表示数列的长度。
第二行包含 n个整数,表示整个数列。
输出格式
输出一个整数,表示逆序对的个数。
数据范围
1≤n≤100000,
数列中的元素的取值范围 [1,109]。
输入样例:
6
2 3 4 5 6 1
输出样例:
5
二、思路及代码
1.思路
第一步:
使用归并排序的思路,过程中进行统计
第二步:
逆序对三种情况:两个都在左分支,两个都在右分支,以及 一个在左分支和一个在右分支。
第三步:
递归排序过程中可以发现,【l, mid】中 的 q[i] 如果大于 【mid + 1, r】中的 q【j】,
那么可知,【i, mid】的数都大于q【j】,这一串数字全部满足逆序对,因此 res += mid - i + 1。
注意:数据范围 1≤n≤100000,数列中的元素的取值范围 [1,10^9]。
所以 答案要用 long long 类型 保证不超范围。
2.答案
代码如下:
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100010;
typedef long long LL;
int n;
int q[N], tmp[N];
LL merge_sort(int l, int r) // 归并排序
{
if (l >= r) return 0;
int mid = l + r >> 1;
LL res = merge_sort(l, mid) + merge_sort(mid + 1, r);
int k = 0, i = l, j = mid + 1;
while (i <= mid && j <= r)
if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ];
else
{
tmp[k ++ ] = q[j ++ ];
res += mid - i + 1;
}
while (i <= mid) tmp[k ++ ] = q[i ++ ];
while (j <= r) tmp[k ++ ] = q[j ++ ];
for (i = l, j = 0; i <= r; i ++, j ++ ) q[i] = tmp[j];
return res;
}
int main()
{
scanf("%d", &n);
for(int i = 0; i < n; i ++) scanf("%d", &q[i]);
cout << merge_sort(0, n - 1) << endl;
return 0;
}