求逆序对的数量



提示:以下是本篇文章正文内容

一、题目

给定一个长度为 n的整数数列,请你计算数列中的逆序对的数量。

逆序对的定义如下:对于数列的第 i个和第 j个元素,如果满足 i<j且 a[i]>a[j],则其为一个逆序对;否则不是。

输入格式
第一行包含整数 n,表示数列的长度。

第二行包含 n个整数,表示整个数列。

输出格式
输出一个整数,表示逆序对的个数。

数据范围
1≤n≤100000,
数列中的元素的取值范围 [1,109]。

输入样例:
6
2 3 4 5 6 1
输出样例:
5

二、思路及代码

1.思路

第一步:

使用归并排序的思路,过程中进行统计

第二步:

逆序对三种情况:两个都在左分支,两个都在右分支,以及 一个在左分支和一个在右分支。

第三步:

递归排序过程中可以发现,【l, mid】中 的 q[i] 如果大于 【mid + 1, r】中的 q【j】,
那么可知,【i, mid】的数都大于q【j】,这一串数字全部满足逆序对,因此 res += mid - i + 1。

注意:数据范围 1≤n≤100000,数列中的元素的取值范围 [1,10^9]。

所以 答案要用 long long 类型 保证不超范围。

2.答案

代码如下:

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 100010;
typedef long long LL;

int n;
int q[N], tmp[N];

LL merge_sort(int l, int r)  // 归并排序
{
    if (l >= r) return 0;

    int mid = l + r >> 1;
    LL res = merge_sort(l, mid) + merge_sort(mid + 1, r);

    int k = 0, i = l, j = mid + 1;
    while (i <= mid && j <= r)
        if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ];
        else 
        {
            tmp[k ++ ] = q[j ++ ];
            res += mid - i + 1; 
        }

    while (i <= mid) tmp[k ++ ] = q[i ++ ];
    while (j <= r) tmp[k ++ ] = q[j ++ ];

    for (i = l, j = 0; i <= r; i ++, j ++ ) q[i] = tmp[j];
    
    return res;
}

int main()
{
    scanf("%d", &n);
    
    for(int i = 0; i < n; i ++) scanf("%d", &q[i]);
        
    cout << merge_sort(0, n - 1) << endl;
    
    return 0;
}



总结

Just Review.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值