DP即Dynamic Programming,按照wiki上面的解释,
dynamic programming
(also known as
dynamic optimization
) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions - ideally, using a memory-based data structure.这里关键词有两个,一个是subproblem,一个是
memory-based,大概意思就是把复杂问题拆分为若干子问题,然后储存子问题的值用以未来的计算。
但是仅仅这样还不够, There are two key attributes that a problem must have in order for dynamic programming to be applicable: optimal substructure and overlapping sub-problems . If a problem can be solved by combining optimal solutions to non-overlapping sub-problems, the strategy is called " divide and conquer " instead. This is why merge sort and quick sort are not classified as dynamic programming problems. Optimal substructure means that the solution to a given optimization problem can be obtained by the combination of optimal solutions to its sub-problems. Overlapping sub-problems means that the space of sub-problems must be small, that is, any recursive algorithm solving the problem should solve the same sub-problems over and over, rather than generating new sub-problems. 意思就是能用最优的子问题得到最优的总问题,然后就是子问题之间要是相重叠 的。
但是仅仅这样还不够, There are two key attributes that a problem must have in order for dynamic programming to be applicable: optimal substructure and overlapping sub-problems . If a problem can be solved by combining optimal solutions to non-overlapping sub-problems, the strategy is called " divide and conquer " instead. This is why merge sort and quick sort are not classified as dynamic programming problems. Optimal substructure means that the solution to a given optimization problem can be obtained by the combination of optimal solutions to its sub-problems. Overlapping sub-problems means that the space of sub-problems must be small, that is, any recursive algorithm solving the problem should solve the same sub-problems over and over, rather than generating new sub-problems. 意思就是能用最优的子问题得到最优的总问题,然后就是子问题之间要是相重叠 的。
光看概念挺玄乎,这是因为DP的覆盖范围其实很大,而在Leetcode算法题和各种面试里遇到的DP问题,大部分都是一个套路,那样就好总结多了。根据个人经验,DP套路如下:
1.首先看是不是DP问题,DP一般求的是最优解的结果,不在乎最优解的形状和过程。其实DP在决策的时候也是可以记录如何选择的,不过不知为何做过的题里面一般都不问。
2.然后确定dp[i][j]的含义。一般从二维开始就行了,够用,而且清晰,后面看情况可能还能减少省空间。至于dp[i][j]的含义,一般是(i,j)范围内,题目所要求的东西。
3.确定方向以及写递归公式。其实dp有点像数学归纳法,子问题之前互相推导。方向有自下而上和自上而下,一个方向不好写就换一个,这个和已知边界是在下还是在上也有关系,毕竟是从已知推未知的。
4.有了公式之后,确定边界条件,也就是开始的地方,然后用公式推导出去就可以得出解法。
5.优化。时间上一般没有太多优化的,空间往往可以优化,把dp矩阵从二维降为一维,或者变成几个变量,具体看推导公式要什么东西。
最核心的还是推导公式。
下面通过看一些例题来具体说明:
1.斐波拉契数列。 0, 1, 1, 2, 3, 5, 8……每一个都是之前两项的和,求第n项的值(例如,第1项是0)。
【解】最基础的dp问题,很直观的可以用一维数组来表达:dp[i]=dp[i-2]+dp[i-1],dp[i]很自然就是index为i的 斐波拉契数列值。初始边界自然就是最开始的两个数。优化方面,由于只需要最近的两个值,所以可以省掉dp数组:
# T:O(n)
1.首先看是不是DP问题,DP一般求的是最优解的结果,不在乎最优解的形状和过程。其实DP在决策的时候也是可以记录如何选择的,不过不知为何做过的题里面一般都不问。
2.然后确定dp[i][j]的含义。一般从二维开始就行了,够用,而且清晰,后面看情况可能还能减少省空间。至于dp[i][j]的含义,一般是(i,j)范围内,题目所要求的东西。
3.确定方向以及写递归公式。其实dp有点像数学归纳法,子问题之前互相推导。方向有自下而上和自上而下,一个方向不好写就换一个,这个和已知边界是在下还是在上也有关系,毕竟是从已知推未知的。
4.有了公式之后,确定边界条件,也就是开始的地方,然后用公式推导出去就可以得出解法。
5.优化。时间上一般没有太多优化的,空间往往可以优化,把dp矩阵从二维降为一维,或者变成几个变量,具体看推导公式要什么东西。
最核心的还是推导公式。
下面通过看一些例题来具体说明:
1.斐波拉契数列。 0, 1, 1, 2, 3, 5, 8……每一个都是之前两项的和,求第n项的值(例如,第1项是0)。
【解】最基础的dp问题,很直观的可以用一维数组来表达:dp[i]=dp[i-2]+dp[i-1],dp[i]很自然就是index为i的 斐波拉契数列值。初始边界自然就是最开始的两个数。优化方面,由于只需要最近的两个值,所以可以省掉dp数组:
# T:O(n)
# S:O(1)
class example1:
def Fibonacci(self, n):
# @param n: int
# @return int
if n == 1:
return 0
if n == 2:
return 1
n_2,n_1 = 0,1
for _ in range(2, n):
temp = n_1 + n_2
n_2, n_1 = n_1, temp
return temp
if __name__ == "__main__":
print
(example1().Fibonacci(
10
))
#34
2.路径数目。假设现在有mxn的矩阵,一个机器人要从左上角走到右下角,每次只能走一步,每一步只能向右一格或者向下一格,求所有的不同路径数目。
【解】说实话这道题排列组合就能做,也是很基础的dp问题。
根据之前说的套路,我们假设dp[i][j]就是从起点到(i,j)这个点的不同路径数目。
那么就要推导递推公式了,一般而言只要dp值的概念对了,方向对了,推导一般也不会很难。这里既然只能向右和向下,那么自然一个点只能是从上方到或者从左方到,路径数也是之前两个的和:
dp[i][j] = dp[i-1][j]+dp[i][j-1]
然后考虑边界问题。很明显,机器人一直沿两条边走的话路径数都是1,即dp[i][0]=dp[0][j]=1.
最后就是优化了。按照之前的思路我们需要一个二维的数组,但看上去在公式里面我们只用到了两个参数,是不是可以像上面那样只用两个变量呢?
答案是否定的,画一画就知道,因为牵扯到行列,之前的值其实也需要存储。由此也得出一个经验式的结论:优化一般降一维。
降一维就是滚动dp了,可以想象有一行dp数组,依行滚动来计算。
# T:O(n^2)
# S:O(n)
class example2 :
def countPath ( self , m , n):
# @param int m,n
# @return int
if not m * n:
return 0
rolling = [ 1 ] * n
for _ in range ( 1 , m):
for j in range ( 1 , n):
rolling[j] += rolling[j- 1 ]
return rolling[- 1 ]
if __name__ == "__main__" :
print (example2().countPath( 4 , 3 )) #10
3.抢劫问题。假设有一排房屋,每间房里面有一些数目的钱,用数组n表示。假设你是强盗,晚上去抢这些房屋,但是如果两间相邻的房间都被抢,警报设施就会报警。求在不惊动警报设置的情况下能抢到的最大金额数目。
【解】这道题就没有之前那么明显的dp痕迹了,所以说判断什么问题用dp也是有技巧的。这道题求最优值,明显子问题之间有联系,dp很合适。
然后确定dp含义。直指要害,就设dp[i][j]是在房屋i和j之内能弄到的最多的钱。这道题由于可以认为是从左边开始的,因此这里就可以省掉一维,dp[i]就是从左边到房屋i之内弄到的最多的钱。
然后就是公式了。这个比之前又难了一点点。面对一间房屋只有两种选择抢还是不抢,因此问题就清楚了:假设之前一间抢了,这间就不能抢,否则抢。亦即dp[i] = max(dp[i-2]+n[i], dp[i-1])
可能这里会有疑问,有没有可能可以抢但是不抢,最后结果更优呢?
这个问题主要是弄清楚我们现在研究的问题,这里研究的是范围内的dp的解,在这个范围内就是最优的,至于范围外的东西,那个由以后的dp负责。例如8,4,5,8,全局来看当然选择两个8,dp的时候到5了,这时候看不到后面的8,因此这时候845的最优解是13。等到了8,就会发现之前的选择更优,还是能找到最优解。
优化:类似于问题1,用几个变量代替数组。
# T:O(n)
# S:O(1)
class example3 :
# @param num, a list of integer
# @return an integer
def rob ( self , num):
if len (num) == 0 :
return 0
if len (num) == 1 :
return num[ 0 ]
num_i , num_i_1 = max (num[ 1 ] , num[ 0 ]) , num[ 0 ]
for i in range ( 2 , len (num)):
num_i_1 , num_i_2 = num_i , num_i_1
num_i = max (num[i] + num_i_2 , num_i_1);
return num_i
if __name__ == '__main__' :
print (example3().rob([ 8 , 4 , 8 , 5 , 9 , 6 , 5 , 4 , 4 , 10 ])) #40