
深度学习
文章平均质量分 91
Bixiwen_liu
这个作者很懒,什么都没留下…
展开
-
基于RetinaFace+ArcFace的人脸识别测试和验证代码
目录一、简介二、代码1、RetinaFace的人脸检测和人脸对齐代码2、ArcFace的人脸识别代码3、完整测试和验证代码三、测试1、人脸实时采集take_pic_retina.py2、人脸批量导入采集take_pic_pic.py3、人脸库更新和测试face_verify_retina.py4、运行四、公开测试集验证一、简介主要介绍用RetinaFace(MobileNet0.25-RetinaFace和Resnet50-RetinaFace)和Arc.原创 2021-04-14 10:13:05 · 5012 阅读 · 7 评论 -
强化学习入门第一讲 马尔科夫决策过程
强化学习算法理论的形成可以追溯到上个世纪七八十年代,近几十年来强化学习算法一直在默默地不断进步,真正火起来是最近几年。代表性的事件是DeepMind 团队于2013年12月首次展示了机器利用强化学习算法在雅达利游戏中打败人类专业玩家,其成果在2015年发布于顶级期刊《自然》上;2014年,谷歌将DeepMind 团队收购。2016年3月,DeepMind开发的AlphaGo程序利用强化学习算法以4:1击败世界围棋高手李世石,至此强化学习算法引起更多学者的关注。如今,强化学习算法已经在如游戏,机器人等领域中开转载 2017-04-20 19:11:04 · 9505 阅读 · 1 评论 -
强化学习基础 第二讲 基于模型的动态规划算法
将强化学习的问题纳入到马尔科夫决策过程的框架下进行解决。一个完整的已知模型的马尔科夫决策过程可以利用元组\left( {S,A,P,r,\gamma } \right)来表示。其中S 为状态集,A为动作集,P 为转移概率,也就是对应着环境和智能体的模型,r为回报函数,\gamma为折扣因子用来计算累积回报R。累积回报公式为R = \sum\limits_{t = 0}^T {{\gamma ^t}} {r_t},其中0 \le \gamma \le 1,T为有限值时,强化学习过程称为有限范围强化学习,当T转载 2017-04-20 19:14:06 · 4418 阅读 · 1 评论 -
强化学习基础 第三讲 蒙特卡罗方法
解决无模型的马尔科夫决策问题是强化学习算法的精髓。如图3.1所示,无模型的强化学习算法主要包括蒙特卡罗方法和时间差分方法。转载 2017-04-20 19:16:12 · 5247 阅读 · 0 评论 -
强化学习入门第四讲 时间差分方法
时间差分(TD)方法是强化学习理论中最核心的内容,是强化学习领域最重要的成果,没有之一。与动态规划的方法和蒙特卡罗的方法比,时间差分的方法主要不同点在值函数估计上面。转载 2017-04-20 19:18:52 · 8139 阅读 · 1 评论 -
从零写一个GAN
现今GAN算法可以算作ML领域下比较热门的一个方向。事实上,GAN已经作为一种思想来渗透在ML的其余领域,从而做出了很多很Amazing的东西。比如结合卷积神经网络,可以用于生成图片。或者结合NLP,可以生成特定风格的短句子。(比如川普风格的twitter......)转载 2017-04-24 10:41:09 · 1179 阅读 · 0 评论 -
神经网络六:深度学习斯坦福cs231n 课程笔记
先特此声明,本文为转载博客,原博客详见深度学习斯坦福cs231n 课程笔记。网上有很多有关斯坦福课程cs231n的笔记,笔者也是查看了一些,选出不错的分享给广大参阅者。笔者一直想看cs231n的原视频,但还未获取资源,若有参阅者有相关资料请分享我一份,在下在此是你万分感谢!前言对于深度学习,新手我推荐先看UFLDL,不做assignment的话,一两个晚上就可以转载 2016-10-28 10:22:15 · 1464 阅读 · 0 评论 -
Faster RCNN算法详解
本文是继RCNN[1],fast RCNN[2]之后,目标检测界的领军人物Ross Girshick团队在2015年的又一力作。简单网络目标检测速度达到17fps,在PASCAL VOC上准确率为59.9%;复杂网络达到5fps,准确率78.8%。转载 2017-06-08 15:26:53 · 902 阅读 · 0 评论 -
YOLO详解
之前介绍了几篇有关于基于 Region Proposal 的目标检测方法,下面介绍不采用 Region Propsal, 直接预测边界框的方法——YOLO转载 2017-06-08 15:31:16 · 1652 阅读 · 0 评论 -
YOLO2详解
本文是对 YOLO9000: Better, Faster, Stronger (项目主页) 的翻译。加了个人理解和配图。内容参考了 YOLOv2 论文笔记 - Jesse_Mx 。水平有限,错误之处欢迎指正。转载 2017-06-08 15:52:01 · 7804 阅读 · 1 评论 -
G-CNN详解
本篇论文的主要创新点是去除了基于CNN的目标检测框架中object proposal阶段,将目标检测问题模型化为迭代回归问题。转载 2017-06-08 16:02:06 · 4511 阅读 · 1 评论 -
SSD:Single Shot MultiBox Detector 详解
SSD是对Faster RCNN RPN这一独特步骤的延伸与整合。总而言之,在思考于RPN进行2-class分类的时候,能否借鉴YOLO并简化faster rcnn在21分类同时整合faster rcnn中anchor boxes实现multi-scale的思想而设计出了SSD,这篇blog关于SSD的细节方面整理的很好,以供参考。转载 2017-06-08 16:07:48 · 4422 阅读 · 0 评论 -
神经网络四:Softmax以及与Sigmoid的关系
Softmax 是神经网络中另一种输出层函数,计算输出层的值。主要用于神经网络最后一层,作为输出层进行多分类,与Logistic多分类函数相对应。两者各有特点,也有联系。原创 2016-10-27 16:14:54 · 34965 阅读 · 0 评论 -
神经网络五:常用的激活函数
本文就现在神经网络中主要的几个激活函数进行分析和讲解,比较几个激活函数的优缺点。翻译 2016-10-27 21:43:41 · 8066 阅读 · 0 评论 -
神经网络二:浅谈反向传播算法(backpropagation algorithm)为什么会很快
浅谈反向传播算法(backpropagation algorithm)为什么会很快原创 2016-10-25 13:39:35 · 1906 阅读 · 0 评论 -
神经网络九:Regularization(正则化)与Dropout
本文主要讲解神经网络中的正则化(Regularization)和Dropout,都是用了减小过拟合。正则化在机器学习领域中很重要。主要针对模型过拟合问题而提出来的。原创 2016-11-01 19:58:06 · 22845 阅读 · 1 评论 -
强化学习进阶 第八讲 确定性策略方法
无模型的策略搜索方法可以分为随机策略搜索方法和确定性策略搜索方法。其中随机策略搜索方法又发展出了很多算法。可以说,差不多在2014年以前,学者们都在发展随机策略搜索的方法。因为,大家都认为确定性策略梯度是不存在的。直到2014年,强化学习算法大神Silver在论文《Deterministic Policy Gradient Algorithms》中提出了确定性策略理论,策略搜索方法中才出现确定性策略这个方法。2015年,DeepMind的大神们又将该理论跟DQN的成功经验结合起来,在论文《Continuou转载 2017-04-20 19:32:05 · 8487 阅读 · 1 评论 -
强化学习进阶 第七讲 TRPO
TRPO是英文单词Trust region policy optimization的简称,翻译成中文是信赖域策略优化。提出这个算法的人是伯克利的博士生John Schulman,此人已于2016年博士毕业。Schulman的导师是强化学习领域的大神Pieter Abbeel, Abbeel是伯克利的副教授,同时也是OpenAI的研究科学家,是机器人强化学习领域最有影响力的人之一。转载 2017-04-20 19:29:51 · 9513 阅读 · 2 评论 -
神经网络七:神经网络设置层的数量和尺寸
神经网络设置层的数量和尺寸翻译 2016-10-28 10:32:20 · 25346 阅读 · 2 评论 -
神经网络八:权重初始化
本文就现在神经网络中权重初始化等相关问题进行讨论转载 2016-10-28 15:28:24 · 18139 阅读 · 0 评论 -
神经网络三:浅析神经网络backpropagation算法中的代价函数
浅析神经网络backpropagation算法中的代价函数,及两种代价函数的对比,分析其优缺点等原创 2016-10-25 14:28:45 · 5350 阅读 · 3 评论 -
RCNN算法详解1
最近一两个月看了CNN和RCNN等,也用CNN做了一些分类检测,效果确实比用ML中的一些算法好很多。从本文到以下几篇博文均是关于RCNN等相关算法的介绍和详解,都是这些天我看的博客,特从中抽取出好的文章来分享,有关CNN的内容,有时间再来回顾。转载 2016-12-10 11:28:45 · 1038 阅读 · 0 评论 -
RCNN2:基于RCNN的物体检测
基于RCNN的物体检测相关RCNN算法详解转载 2016-12-10 11:33:07 · 1097 阅读 · 0 评论 -
RCNN3:SPP-net
这是转载的第三篇,主要讲解SPP-net(Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition),转载自:SPP-net.CNN网络需要固定尺寸的图像输入,SPPNet将任意大小的图像池化生成固定长度的图像表示,提升R-CNN检测的速度24-102倍。固定图像尺寸输入的问题,截转载 2016-12-10 11:55:12 · 830 阅读 · 0 评论 -
Fast-RCNN
fast-rcnn转载 2016-12-10 12:02:52 · 801 阅读 · 0 评论 -
RCNN:Bounding-Box(BB)regression
本博客主要介绍RCNN中的Bounding-box的回归问题,这个是RCNN定准确定位的关键。本文是转载自博客:Faster-RCNN详解,从中截取有关RCNN的bounding-box的回归部分。原博文详细介绍了RCNN,Fast-RCNN以及Faster-RCNN,感兴趣的可以去看一下。转载 2016-12-23 15:55:44 · 18284 阅读 · 4 评论 -
RNN:基础内容介绍
之前介绍的神经网络(CNN等)所处理的问题,如分类,回归或特征表达等问题的数据都是IID(独立同分布)的,而在现实中更多的数据不满足IID,比如序列分析,序列的生成(如语言翻译,自动文本生成等),内容提取(如图像描述等)。而今天介绍的RNN(Recurrent Neural Network)就是处理序列数据问题的网络,RNN不仅仅能够处理序列的输入,也能够获得序列的输出原创 2016-12-27 22:43:05 · 1335 阅读 · 0 评论 -
GAN:生成式对抗网络介绍和其优缺点以及研究现状
本博文是转载自一篇博文,介绍GAN(Generative Adversarial Networks)即生成式对抗网络的原理以及GAN的优缺点的分析和GAN网络研究发展现状转载 2016-12-28 16:43:37 · 66170 阅读 · 1 评论 -
神经网络一:介绍,示例,代码
介绍神经网络的概述和模型,以及示例详细过程,示例Python代码原创 2016-10-22 14:34:04 · 12676 阅读 · 5 评论 -
神经网络实战示例一:手写数字识别综合示例研究1 之 MyEclipse中安装Git
讲了许多理论性的神经网络知识,现在终于可以做点东西练练手了!虽然本文的手写字相关图片代码等等来自网上,但将整个过程自己实战一下,对练练手还是可以的。本文主要介绍手写数字识别的研究的整个过程,以及怎么调参等提高识别率等。本文大部分来自观看麦子学院的视频而来。自己动手才能了解更多,学到更多原创 2016-10-29 17:25:44 · 1055 阅读 · 0 评论 -
强化学习入门 第五讲 值函数逼近
对于模型已知的系统,值函数可以利用动态规划的方法得到;对于模型未知的系统,可以利用蒙特卡罗的方法或者时间差分的方法得到。转载 2017-04-20 19:25:19 · 5624 阅读 · 0 评论 -
强化学习进阶 第六讲 策略梯度方法
转载自知乎专栏 天津包子馅儿 的知乎说明:从这讲开始,我们进入强化学习的进阶课程学习。进阶课程以强化学习入门第一讲到第五讲为基础,所以请读者先读前面的课程讲义。该进阶课程也有五讲,主要讲解直接策略搜索方法。内容涉及到近十几年比较主流的直接策略搜索方法。本课程参考资料是Pieter Abbeel 在NIPS2016给的tutorial,视频网址为:Deep Reinforce转载 2017-04-20 19:27:40 · 13094 阅读 · 0 评论 -
神经网络实战示例一:神经网络中的参数调试研究——手写数字识别综合示例研究2
紧接上一篇博客继续讲解手写数字识别的研究。本文主要讲解神经网络中有哪些可以调试的参数以及如何去调试,调试中相关的代码,等等。这里手写数字识别的全部代码方面就不仔细讲解了,主要讲解主要的一些代码,其余的参阅者可以自己去看相关的代码。原创 2016-10-29 18:20:12 · 4094 阅读 · 0 评论