一、政策驱动下的虚假繁荣
1.1 资本与舆论的双重造势
2023 年以来,生成式 AI 如同一股汹涌浪潮,在中国大地全面掀起热潮。这一热潮并非偶然,是政策红利与资本热捧共同作用的结果,进而催生了 “全民 AI” 的狂欢景象。从政策角度来看,国家对人工智能发展高度重视,出台了一系列鼓励政策,各地政府纷纷响应,积极布局 AI 产业,为 AI 发展营造了良好的政策环境。工信部数据显示,2023 年国内生成式 AI 市场规模突破 14.4 万亿元,这一庞大数字彰显了 AI 产业在政策推动下的快速扩张。10 亿参数以上大模型数量超百个,各地算力中心也如雨后春笋般涌现,似乎在表明中国 AI 产业正大步迈向世界前列。
然而,拨开这层繁荣的表象,内里却暗藏危机。部分算力平台实际使用率不足 20%,大量算力资源被闲置,造成了资源的极大浪费。在一些区域,甚至出现了负电价的荒诞现象,电力供应过剩,这与当初为满足 AI 发展对电力需求而大力发展电力供应的初衷背道而驰,盲目上马的基础设施与实际需求严重脱节。这种脱节反映出在政策驱动下,部分地区和企业对 AI 发展的盲目乐观和非理性投资,只看到了 AI 产业的巨大潜力,却忽视了实际的市场需求和技术发展阶段。
1.2 伪创新的 “纳米化” 陷阱
当前 AI 领域的发展,正重蹈当年 “纳米热” 的覆辙。曾经,“纳米” 概念风靡一时,市场上充斥着各种打着 “纳米” 旗号的产品,从纳米鞋垫到纳米高压锅,看似高科技,实则很多是利用概念进行炒作,并无真正的技术创新。如今的 AI 领域,也存在类似的问题。高校纷纷设立人工智能学院,本是为了培养 AI 专业人才,推动 AI 技术发展,但现实却令人担忧。许多人工智能学院的院长并非 AI 领域的专业人士,而是来自计算机理论或艺术学科背景的 “跨界选手”。这些院长缺乏 AI 领域的专业知识和研究经验,难以在 AI 教学和研究上提供专业指导,使得人工智能学院的发展方向出现偏差。
大模型公司自称 “六小龙”,估值虚高,吸引了大量资本投入。但实际上,这些公司普遍亏损,盈利能力不足。它们更多的是依靠资本运作和市场炒作来维持高估值,而不是凭借真正的技术实力和创新能力。这种 “挂羊头卖狗肉” 的现象,本质上是对技术投机的盲目跟风。朱松纯教授提出的 “乌鸦与鹦鹉范式” 批判,深刻揭示了当前 AI 领域的问题。鹦鹉虽能模仿人类语言,但只是简单的重复,缺乏真正的理解和创新能力;而乌鸦能够通过思考和推理解决问题,具有自主创新能力。当前的 AI 发展,更多的是鹦鹉式模仿,大量的模型训练和应用都是基于已有的数据和算法进行模仿和优化,缺乏乌鸦式创新,即对 AI 本质和核心技术的深入研究和突破。
1.3 应用层爆发式增长
在表面的繁荣与背后的乱象中,生成式 AI 在应用层却展现出了强大的生命力和潜力,实现了爆发式增长。生成式 AI 深度渗透消费端,用户规模达 2.49 亿,这一庞大的用户群体反映了生成式 AI 在消费市场的受欢迎程度。它覆盖了搜索、办公、内容创作等高频场景,成为人们日常生活和工作中的得力助手。例如夸克的 “AI 超级框”,集成了对话、搜索、执行能力,日活用户超 3400 万,用户通过夸克的 AI 功能,可以更快速、准确地获取信息,提高工作和学习效率。
在金融领域,AI 技术被广泛应用于风险控制和投资决策。通过对大量金融数据的分析和挖掘,AI 可以实时监测市场风险,为金融机构提供精准的风险预警,帮助金融机构降低风险损失。在医疗领域,AI 也发挥着重要作用。它可以辅助医生进行疾病诊断,通过对医学影像和病历数据的分析,帮助医生更准确地判断病情,提高诊疗效率和准确性。例如,一些 AI 医疗产品可以快速识别医学影像中的病变,为医生提供诊断建议,缩短诊断时间,提高治疗效果。这些应用案例充分展示了生成式 AI 在不同领域的落地潜力,为各行业的发展带来了新的机遇和变革。
1.4 政策与资本双重驱动
中央《提振消费专项行动方案》明确 “人工智能 +” 战略,为 AI 产业的发展指明了方向。地方政府也积极响应,密集布局算力中心与产业园区。各地纷纷出台优惠政策,吸引 AI 企业入驻,加大对 AI 产业的投资力度