3分钟完成deepseek本地化部署

引言

        身为天选打工人,在模型部署这条路上,你是不是也被这些难题折磨得苦不堪言?

        “更新个库就报错,版本对不上查半天,翻烂了也找不到解法?”——这工具自带“环境照妖镜”,自动检测Python、CUDA版本,连第三方库的兼容性都给你配齐,不用再折腾pip install报错到天亮。

        “公司服务器卡成PPT,自己电脑跑模型像煮开水?”安装时直接显示你的显卡能扛多大模型,7B小模型低配电脑也能跑,还能一键切换“省电模式”,GPU温度过高自动降负荷,不怕硬件烧冒烟。

        

        自己是个小白压根看不懂,这些高大上的教程,“ 什么部署什么模型”,压根看不懂,这些到底是个什么玩意,“好不容易装好了,改个参数又要重头再来?

最近我发现了一款deepseek本地部署神器,三分钟让这些苦恼不复存在,跟我四步解决所有问题:

第一步:下载dS大模型本地部署安装助手

网站链接:https://file-cdn-deepseek.fanqiesoft.cn/deepseek/deepseek_28361_st.exe

第二步:立即安装Deepseek

        点击 “立即安装 DeepSeek” 后,DS 本地部署工具便自动开启资源下载、模型部署、软件安装等流程,无需专业知识,即可将具备 R1 深度思考、无联网可用、私有化部署等优势的 DS - R1 大模型部署到 Windows 10/11 系统设备中。

点击立即下载https://file-cdn-deepseek.fanqiesoft.cn/deepseek/deepseek_28361_st.exe

第三步:模型选择

        选择如 DS - R1 大模型 - 7B 等模型,指定下载路径(如 E:\download - deepseek ),工具会提示所需空间及当前可用空间,还可操作资源下载的暂停与继续。

 根据提示选择,所需模型:推荐此模型,适合当前设备

模型名称文件大小CPU 最低要求CPU 推荐要求内存要求显卡要求
DS-R1 大模型 - 1.5B1.04GB2 核4 核4GB
DS-R1 大模型 - 7B4.36GB4 核8 核16GB
DS-R1 大模型 - 8B4.58GB4 核8 核16GB
DS-R1 大模型 - 14B8.37GB12 核16 核32GB独立显卡
DS-R1 大模型 - 32B18.49GB24 核32 核64GB独立显卡
DS-R1 大模型 - 70B39.60GB32 核48 核64GB32G + 显存

第四步:模型配置

界面中选择设置,选择模型提供方,如 OpenAI API、Claude API、Ollama、LMStudio、SiliconCloud API ;都能满足不同用户对模型功能和特性的差异化需求。比如,若你对文本生成的创意性有较高要求, OpenAI API 会是不错的选择,具体模型针对于我们的需求进行选择

第五步 使用教程

  在我的搭档中找到相关功能,针对我们需求进行选择,下面我针对几个功能进行讲解和试用

         5.1 小红书文案生成器

        针对小红书平台特点,生成吸睛且符合平台风格的文案,助力用户在小红书推广内容、分享生活。

        提问:你好,小红书文案生成器。我最近入手了一款超好用的美白精华,想在小红书分享使用感受。主要突出它美白效果显著、质地清爽不油腻,而且成分温和不刺激。能不能帮我生成几条吸引人的文案呀

        

        5.2 论文润色

        我最近完成了一篇学术论文初稿,内容是关于计算机科学领域大语言模型多模态融合技术研究。但我总觉得论文在语言表达、逻辑结构等方面还不够完善,想借助咱们的论文润色功能进行优化。我想了解一下,它能帮我纠正文中复杂句式里隐藏的语法错误吗?像从句嵌套较多的长难句,我很担心会有语病问题。另外,在专业术语使用上,能不能依据领域标准词库,帮我校准术语,并且标注出可能存在争议的用词,给出替代方案?我还希望论文整体逻辑更紧密,它可以通过因果链分析,检测论证过程中的逻辑断点,然后给出补充论证或过渡方案建议吗?

        5.3 翻译助手

翻译助手,我这有一些英文段落需要翻译成中文。第一段是 “The development of artificial intelligence algorithms has significantly improved the efficiency of data processing. In particular, deep learning techniques, such as convolutional neural networks and recurrent neural networks, have shown remarkable performance in image recognition, natural language processing, and other aspects.” ;第二段是 “Cardiovascular diseases remain one of the leading causes of death globally. A balanced diet, regular physical activity, and avoiding smoking are crucial preventive measures.” 。请你把它们准确且通顺地翻译出来,并且对于像 “convolutional neural networks” “Cardiovascular diseases” 这样的专业术语翻译,最好能附上一些简单解释,方便我理解,谢谢。

                

        5.4  软件工程师

我正在开发一个基于 Spring Boot 的电商后台管理系统,现在遇到几个难题。一是商品库存扣减功能,并发情况下容易出现超卖,该怎么用分布式锁或者乐观锁解决?二是系统接口响应速度慢,尤其是商品列表查询接口,数据量一大就卡,该如何进行 SQL 优化和缓存设计?另外,微服务架构下,服务之间的调用链路追踪该怎么实现?软件工程师功能能帮我给出详细的解决方案和代码示例吗?

总结

### DeepSeek本地化部署概念 DeepSeek本地化部署是指将DeepSeek人工智能模型及相关服务安装到用户的本地计算环境中,而非依赖于远程服务器或云端资源[^1]。这种方式能够显著减少因互联网连接不稳定而导致的服务中断风险,同时增强数据的安全性和隐私保护水平。 ### 实现DeepSeek本地化部署的方法 #### 准备工作 为了顺利完成DeepSeek本地化部署,需提前准备好适合运行该系统的硬件环境以及必要的软件工具包。确保目标机器具备足够的处理能力、内存空间和其他资源配置来支持所选模型版本的要求。 #### 获取模型文件 对于希望在中国大陆地区获取最新版DeepSeek蒸馏模型的情况,建议访问国内的大规模预训练模型镜像站点下载带有`.gguf`扩展名的目标文件;如果遇到速度较慢的问题,则可以考虑从ModelScope平台进行下载操作以获得更好的传输效率[^2]。 #### 部署流程概述 完成上述准备工作之后,按照官方文档指导依次执行以下三个主要步骤: - **配置环境变量**:设置好Python虚拟环境以及其他可能需要用到的语言解释器路径; - **加载并初始化模型实例**:读取已准备好的GGUF格式参数权重至内存当中形成可用的工作副本; - **启动API接口监听进程**:使应用程序可以通过HTTP请求等方式调用已经就绪的各项功能模块。 ```bash # 假设使用pip管理依赖项 $ pip install -r requirements.txt # 启动应用服务端口8080作为示例 $ python app.py --port=8080 ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yan-英杰

感谢大佬打赏,我会更加努力创作

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值