阶段:移动步数,因为总共n+m-2步
维护状态:两条路径移动i步后的末端的坐标
这样共五维,nmnm *(n+m-2),不合适
我们发现,路径纵坐标始终等于步数+2-横坐标
于是省去2维
如果滚动数组还能再省一维,但没必要
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
//typedef __int128 LL;
//typedef unsigned long long ull;
//#define F first
//#define S second
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef pair<ld,ld> pdd;
const ld PI=acos(-1);
const ld eps=1e-9;
//unordered_map<int,int>mp;
#define ls (o<<1)
#define rs (o<<1|1)
#define pb push_back
const int seed=131;
const int M = 1e5+7;
int f[103][53][53];//f[i][x1][x2] 走i步时,两条路径的横坐标
// 纵坐标: y1=i-x1,y2=i-x2;
//转移直接从当前状态往下,往右转移就行,共4种
int a[57][57];
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
cin>>a[i][j];
}
f[0][1][1]=a[1][1];
for(int i=0;i<=n+m-2;i++)
for(int x1=1;x1<=min(n,i+1);x1++)
for(int x2=1;x2<=min(n,i+1);x2++)
{
//第一维可以只开2省50倍空间,滚动数组,但没必要
// if(i+3-x1>0&&i+3-x2>0)
f[i+1][x1][x2]=max(f[i+1][x1][x2],f[i][x1][x2]+((x1==x2)?a[x1][i+3-x1]:(a[x1][i+3-x1]+a[x2][i+3-x2])));
//下 下
//if(i+3-x1>0&&i+3-x2-1>0)
f[i+1][x1][x2+1]=max(f[i+1][x1][x2+1],f[i][x1][x2]+((x1==x2+1)?a[x1][i+3-x1]:(a[x1][i+3-x1]+a[x2+1][i+3-x2-1])));
//下 右
// if(i+3-x1-1>0&&i+3-x2>0)
f[i+1][x1+1][x2]=max(f[i+1][x1+1][x2],f[i][x1][x2]+((x1+1==x2)?a[x2][i+3-x2]:(a[x1+1][i+3-x1-1]+a[x2][i+3-x2])));
//右 下
// if(i+3-x1-1>0&&i+3-x2-1>0)
f[i+1][x1+1][x2+1]=max(f[i+1][x1+1][x2+1],f[i][x1][x2]+((x1+1==x2+1)?a[x1+1][i+3-x1-1]:(a[x1+1][i+3-x1-1]+a[x2+1][i+3-x2-1])));
//右 右
}
cout<<f[n+m-2][n][n]<<endl;
return 0;
}