2019.8.29更新:归并函数求逆序对
CDQ分治思想,算分治的左区间对有区间的贡献
//KX
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double db;
//unordered_map<int,int>mp;
const int M= 1e5+7;
ll ans=0;
int a[M],b[M];
void merge(int l,int r)
{
if (l==r) return;
int mid=(l+r)>>1;
merge(l,mid);
merge(mid+1,r);
int t1=l;
int t2=mid+1;
for (int i=l;i<=r;i++)
{
if ((t1<=mid&&a[t1]<=a[t2])||t2>r) {
b[i]=a[t1];
t1++;
}
else
{
b[i]=a[t2];
ans+=(mid-t1+1);
t2++;
}
}
for (int i=l;i<=r;i++) a[i]=b[i];
}
int main()
{
int n;
scanf("%d",&n);
for (int i=1;i<=n;i++) scanf("%d",&a[i]);
merge(1,n);
printf("%d",ans);
return 0;
}
https://blog.csdn.net/SSimpLe_Y/article/details/53744096
做一道CF E题,题解说与另一道D题相似,然后D题的思想就是树状数组求逆序对。
所以顺道学了一遍。。这篇博客讲的很好了。
粘下来学习一下,顺便说下,如果没有重复数组,最好不要B数组,不然内存会变成2倍。
#include<bits/stdc++.h>
#define lowbit(x) x&(-x)
using namespace std;
typedef long long ll;
const int M = 500000+100;
ll n,C[M],B[M];
struct node
{
ll val;
ll pos;
}A[M];
void add(ll x)
{
while(x<=n)
{
C[x]++;
x+=lowbit(x);
}
}
ll query(ll x)
{
ll ans=0;
while(x)
{
ans+=C[x];
x-=lowbit(x);
}
return ans;
}
bool cmp(node a,node b)
{
return a.val<b.val;
}
int main()
{
scanf("%lld",&n);
for(int i=1;i<=n;i++)
scanf("%lld",&A[i].val),A[i].pos=i;
sort(A+1,A+1+n,cmp);
int cnt=1;
for(int i=1;i<=n;i++)
{
if(i!=1&&A[i].val!=A[i-1].val)
cnt++;
B[A[i].pos]=cnt;
}//B数组防止重复元素,sort后是为了离散化
ll ans=0;
for(int i=1;i<=n;i++)
{
add(B[i]);
ans+=i-query(B[i]);
}
printf("%lld\n",ans);
return 0;
}
个人觉得下面的写法可能更简单且更好理解。
就是直接反序插入到树状数组中,这样每次询问的都是大于当前值的前面区间的个数。
这样就不用进行减法操作,和包括本身的操作考虑了。
不过上面那种有时候变换形式可以用到low_bound()这个方便的二分查找
#include<algorithm>
#include<cstdio>
using namespace std;
int n,m,c[40005]={0},a[40005]={0},b[40005]={0}; //定义数组,b[]为读入的数组,a[]为要离散化后的数组,C[]为树状数组
inline void Add(register int x) //树状数组加入
{
for(;x<=n;x+=(x&-x))
c[x]++; //因为这里只需要1,所以我就写出c[x]++了
}
inline int Sum(register int x) //树状数组求和,同上面的sum(x)
{
register int s=0; //计数的变量
for(;x>0;x-=(x&-x)) //累计
s+=c[x];
return s; //返回结果
}
bool cmp1(const int &x,const int &y) //离散化需要用的,上面有讲
{
return b[x]>b[y];
}
int main()
{
int ans=0; //ans为最后的结果
scanf("%d",&n); //读入n
for(register int i=1;i<=n;i++)
{
scanf("%d",&b[i]); //读入
a[i]=i; //顺便初始化一下a数组
}
sort(a+1,a+n+1,cmp1); //给a数组排序,达到最终的效果
for(register int i=1;i<=n;i++)
{
Add(a[i]); //依次加入树状数组
ans+=Sum(a[i]-1); //计算结果并累计
}
printf("%d",ans); //输出ans
return 0; //返回
}