求逆序对

2019.8.29更新:归并函数求逆序对

CDQ分治思想,算分治的左区间对有区间的贡献

//KX
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double db;
//unordered_map<int,int>mp;
const int M= 1e5+7;
ll ans=0; 
int a[M],b[M];
void merge(int l,int r)
{
    if (l==r) return;
    int mid=(l+r)>>1;
    merge(l,mid);
    merge(mid+1,r);
    int t1=l; 
    int t2=mid+1;
    for (int i=l;i<=r;i++)
    {
        if ((t1<=mid&&a[t1]<=a[t2])||t2>r) {
            b[i]=a[t1];
            t1++;
        }
        else
        {
            b[i]=a[t2]; 
            ans+=(mid-t1+1);
            t2++;
        } 
    }
    for (int i=l;i<=r;i++) a[i]=b[i];
}

int main()
{
	int n;
    scanf("%d",&n);
    for (int i=1;i<=n;i++) scanf("%d",&a[i]);
    merge(1,n);
    printf("%d",ans);
    return 0;
} 

 

 

 

https://blog.csdn.net/SSimpLe_Y/article/details/53744096

做一道CF  E题,题解说与另一道D题相似,然后D题的思想就是树状数组求逆序对。

所以顺道学了一遍。。这篇博客讲的很好了。

粘下来学习一下,顺便说下,如果没有重复数组,最好不要B数组,不然内存会变成2倍。

#include<bits/stdc++.h>
#define lowbit(x) x&(-x)
using namespace std;
typedef long long ll;
const int M = 500000+100;
ll n,C[M],B[M];
struct node
{
    ll val;
    ll pos;
}A[M];
void add(ll x)
{
    while(x<=n)
    {
        C[x]++;
        x+=lowbit(x);
    }
}
ll query(ll x)
{
    ll ans=0;
    while(x)
    {
        ans+=C[x];
        x-=lowbit(x);
    }
    return ans;
}
bool cmp(node a,node b)
{
    return a.val<b.val;
}
int main()
{
    scanf("%lld",&n);
    for(int i=1;i<=n;i++)
        scanf("%lld",&A[i].val),A[i].pos=i;
    sort(A+1,A+1+n,cmp);
    int cnt=1;
    for(int i=1;i<=n;i++)
    {
        if(i!=1&&A[i].val!=A[i-1].val)
            cnt++;
        B[A[i].pos]=cnt;
    }//B数组防止重复元素,sort后是为了离散化
    ll ans=0;
    for(int i=1;i<=n;i++)
    {
        add(B[i]);
        ans+=i-query(B[i]);
    }
    printf("%lld\n",ans);
    return 0;
}

个人觉得下面的写法可能更简单且更好理解。

就是直接反序插入到树状数组中,这样每次询问的都是大于当前值的前面区间的个数。

这样就不用进行减法操作,和包括本身的操作考虑了。

不过上面那种有时候变换形式可以用到low_bound()这个方便的二分查找

#include<algorithm>
#include<cstdio>
using namespace std;
int n,m,c[40005]={0},a[40005]={0},b[40005]={0};  //定义数组,b[]为读入的数组,a[]为要离散化后的数组,C[]为树状数组
inline void Add(register int x)  //树状数组加入
{
    for(;x<=n;x+=(x&-x))
        c[x]++;  //因为这里只需要1,所以我就写出c[x]++了
}
inline int Sum(register int x)  //树状数组求和,同上面的sum(x)
{
    register int s=0;  //计数的变量
    for(;x>0;x-=(x&-x))  //累计
        s+=c[x];
    return s;  //返回结果
}
bool cmp1(const int &x,const int &y)  //离散化需要用的,上面有讲
{
    return b[x]>b[y];
}
int main()
{
    int ans=0;  //ans为最后的结果
    scanf("%d",&n);  //读入n
    for(register int i=1;i<=n;i++)
    {
        scanf("%d",&b[i]);  //读入
        a[i]=i;  //顺便初始化一下a数组
    }
    sort(a+1,a+n+1,cmp1);  //给a数组排序,达到最终的效果
    for(register int i=1;i<=n;i++)
    {
        Add(a[i]);  //依次加入树状数组
        ans+=Sum(a[i]-1);  //计算结果并累计
    }
    printf("%d",ans);  //输出ans
    return 0;  //返回
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值