AI
文章平均质量分 61
安安静静的懒
这个作者很懒,什么都没留下…
展开
-
模型训练过程中的拟合问题
形象的说,拟合就是把平面上一系列的点,用一条光滑的曲线连接起来。因为这条曲线有无数种可能,从而有各种拟合方法。拟合的曲线一般可以用函数表示,根据这个函数的不同有不同的拟合名字。但凡事都不一定都会存在机制完美的一面,拟合也一样,拟合的过程也需要控制拟合的度,欠了不好,过了也不好,不管欠还是过都会导致在使用其组样本预测时的不准确.通过一条函数曲线将样本数据中的各个点进行连接或者分割,寻找最优函数曲线的过程就是拟合的过程.原创 2023-06-06 09:58:22 · 177 阅读 · 0 评论 -
LSTM单一维度预测
# 导入资源import numpy as npimport matplotlib.pyplot as pltimport pandas as pdfrom sklearn.preprocessing import MinMaxScalerfrom keras.models import Sequentialfrom keras.layers import Densefrom keras.layers import LSTM# 设置plt中文字体plt.rcParams['font.f.原创 2021-07-19 20:51:29 · 937 阅读 · 0 评论 -
LSTM多维度预测
# 导入资源import numpy as npimport matplotlib.pyplot as pltimport pandas as pdfrom sklearn.preprocessing import MinMaxScalerfrom keras.models import Sequentialfrom keras.layers import Densefrom keras.layers import LSTM# 设置plt中文字体from HDFS import HDF.原创 2021-07-19 20:49:54 · 1030 阅读 · 0 评论 -
TensorFlow的基础和高级API
tf.app这个模块相当于为TensorFlow进行的脚本提供一个main函数入口,可以定义脚本运行的flagstf.imageTensorFlow的图像处理操作,主要是一些颜色变换、变形和图像的编码和解码tf.gfile这个模块提供了一组文件操作函数tf.summary用来生成TensorBoard可用的统计日志,目前Summary主要提供了4种类型:audio、image、histogram、scalartf.python_io用来读写TFRecords文件tf.原创 2020-06-13 14:56:13 · 295 阅读 · 0 评论 -
深度学习笔记 之 TensorFlow基础
基本数学概念名称 解释 计算机中形态 标量 标量(scalar),亦称“无向量”。有些物理量,只具有数值大小,而没有方向,部分有正负之分。物理学中,标量(或作纯量)指在坐标变换下保持不变的物理量。用通俗的说法,标量是只有大小,没有方向的量。 number,一个数字 向量 在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量原创 2020-06-13 13:33:54 · 203 阅读 · 0 评论 -
人工智能需要的数学基础
人工智能需要具备的数学基础有很多,如:1、线性代数:本质是将具体的事物抽象为数学对象,并描述其静态或动态特性,在人工智能领域,计算机处理生活中的事物采用的就是将具体抽象化的方法。2、概率论:概率论是对生活中无所不在的可行性的分析研究,在人工智能领域,概率论通过对生活中的可行性进行建模分析处理,进而做出判断或操作。3、形式逻辑:理想的人工智能应该具有抽象意义的学习、推理和归纳的能力,这就需要一个认知的过程,如果我们将认知的过程定义为对符号的逻辑运算,那么形式逻辑就是人工智能的基础。4、数理统计原创 2020-06-09 20:45:08 · 5197 阅读 · 0 评论 -
人工智能(AI)入门
人工智能的入门学习需要具备的知识结构:一、编程语言选择推荐python,原因有二,其一,语法简单易学;其二,有丰富的库支持。二、算法设计基础人工智能的研究内容集中在六个方向,自然语言处理、知识表示、自动推理、机器学习、计算机视觉和机器人学。算法设计可以从基础算法开始,包括递归、概率分析和随机算法、堆排序、快速排序、线性时间排序、二叉树搜索、图算法等。三、人工智能基础人工智能基础包括人工智能发展史、智能体、问题求解、推理与规划、不确定知识与推理、机器学习、感知与行动等。...原创 2020-06-09 20:11:58 · 2819 阅读 · 0 评论 -
深度学习之卷积云的理解
输入层:输入待处理的数据矩阵卷积层:数据矩阵通过卷积核进行卷积计算,卷积计算后的样本大小为:样本宽度-卷积核宽度+1 卷积计算方式:A[1:1]*B[1:1]=D1 A[1:2]*B[1:2]=D2 A[2:1]*B[2:1]=D3 A[2:2]*B[2:2]=D4 C[1:1]=D1+D2+D3+D4池化层:特征压缩、简化网络计算复杂...原创 2019-08-12 14:46:59 · 1508 阅读 · 0 评论