深度学习之卷积云的理解

输入层:输入待处理的数据矩阵
卷积层:数据矩阵通过卷积核进行卷积计算,卷积计算后的样本大小为:样本宽度-卷积核宽度+1

      卷积计算方式:

A[1:1]*B[1:1]=D1A[1:2]*B[1:2]=D2
A[2:1]*B[2:1]=D3A[2:2]*B[2:2]=D4

      C[1:1]=D1+D2+D3+D4


池化层:特征压缩、简化网络计算复杂度(方式一:取平均值;方式二:取最大值)数据矩阵大小减半

激活函数:(理解深度不够,需要进一步学习)通过函数曲线在[0,1]或者[-1,1]之间将样本进行分类

sigmoid函数
tanh(反正切)函数
ReLU(Rectified Linear Unit)函数
leaky ReLU
softmax

全连接层:(个人理解,尚不够深刻,有待进一步理解,得到非线性样本结果)

 

 


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值