输入层:输入待处理的数据矩阵
卷积层:数据矩阵通过卷积核进行卷积计算,卷积计算后的样本大小为:样本宽度-卷积核宽度+1
卷积计算方式:
A[1:1]*B[1:1]=D1 | A[1:2]*B[1:2]=D2 |
A[2:1]*B[2:1]=D3 | A[2:2]*B[2:2]=D4 |
C[1:1]=D1+D2+D3+D4
池化层:特征压缩、简化网络计算复杂度(方式一:取平均值;方式二:取最大值)数据矩阵大小减半
激活函数:(理解深度不够,需要进一步学习)通过函数曲线在[0,1]或者[-1,1]之间将样本进行分类
sigmoid函数 |
tanh(反正切)函数 |
ReLU(Rectified Linear Unit)函数 |
leaky ReLU |
softmax |
全连接层:(个人理解,尚不够深刻,有待进一步理解,得到非线性样本结果)