深度学习之卷积云的理解

输入层:输入待处理的数据矩阵
卷积层:数据矩阵通过卷积核进行卷积计算,卷积计算后的样本大小为:样本宽度-卷积核宽度+1

      卷积计算方式:

A[1:1]*B[1:1]=D1A[1:2]*B[1:2]=D2
A[2:1]*B[2:1]=D3A[2:2]*B[2:2]=D4

      C[1:1]=D1+D2+D3+D4


池化层:特征压缩、简化网络计算复杂度(方式一:取平均值;方式二:取最大值)数据矩阵大小减半

激活函数:(理解深度不够,需要进一步学习)通过函数曲线在[0,1]或者[-1,1]之间将样本进行分类

sigmoid函数
tanh(反正切)函数
ReLU(Rectified Linear Unit)函数
leaky ReLU
softmax

全连接层:(个人理解,尚不够深刻,有待进一步理解,得到非线性样本结果)

 

 


 

### 卷积云概述 卷积云是一种特殊的气象现象,通常表现为较小的白色云团或斑点状结构,排列整齐如同涟漪一般[^1]。这种云层主要由水滴组成,在特定的大气条件下形成。尽管卷积云本身并不直接与信息技术领域相关联,但在遥感图像处理、机器学习以及模式识别等领域中,其研究具有一定的间接应用价值。 #### 遥感技术中的卷积云分析 在卫星遥感影像中,卷积云因其独特的形态特征成为重要的研究对象之一。通过利用光谱特性差异和几何关系,可以采用多种方法对其进行分类和检测。例如,李炳燮等人提出的厚云阴影地域增强模型能够有效应用于复杂场景下的云影检测,但对于较薄的卷积云可能仍存在误判风险[^2]。 #### 基于人工神经网络的方法 为了提高卷积云自动识别精度,近年来研究人员尝试引入深度学习框架来解决这一问题。其中最常用的技术便是基于人工神经网络(ANN)构建的卷积神经网络(CNN)。作为一种改进型多层感知器架构,CNN特别擅长提取二维输入数据的空间层次化特征[^3]。具体实现流程如下: ```python import tensorflow as tf from tensorflow.keras import layers, models def create_cnn_model(input_shape): model = models.Sequential() # 添加卷积层与池化操作 model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape)) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) # 输出层用于二分类任务 model.add(layers.Dense(1, activation='sigmoid')) return model ``` 上述代码片段展示了如何定义一个基础版本的 CNN 模型以完成卷积云与其他类型云朵之间的区分工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值