1.
·
Negative(I)=2k−I
N=∑i=1ndiRi−1
证明进制转化是对的
对于一个数
x=(xnxn−1...x1)2
,有:
x=∑i=1ndi2i−1
即:
x=xn∗2n−1+xn−1∗2n−2+...+x3∗22+x2∗21+x1∗20
即:
x=23∗∑i=4ndi2i−4+(x3∗22+x2∗21+x1∗20)∗80
即:
x=81∗∑i=4ndi2i−4+(x3∗22+x2∗21+x1∗20)∗80
即:
x=82∗∑i=7ndi2i−7+(x3∗22+x2∗21+x1∗20)∗81+(x3∗22+x2∗21+x1∗20)∗80
依次类推,可见每三位读取转化为8进制是正确的。
证明负数等于取反加1
已知
Negative(x)=2n−x
,
令y为x每位取反后加1,下证
y=Negative(x)
.
x=x0∗2n−1+x1∗2n−2+...+xn−1∗20
y=(1−x0)∗2n−1+(1−x1)∗2n−2+...+(1−xn−1)∗20+1
即:
y=2n−1+2n−2+...+21+20−(x0∗2n−1+x1∗2n−2+...+xn−1∗20)+1
也即:
y=(2n−1+2n−2+...+21+20+1)−(x0∗2n−1+x1∗2n−2+...+xn−1∗20)
由等比数列求和可得:
y=2n−(x0∗2n−1+x1∗2n−2+...+xn−1∗20)
即:
y=2n−x
所以: y=Negative(x)
证明n位有符号二进制数x向m位有符号二进制数扩展时,使用最高位扩展。
证明:
(1)当x为正数的时候显然成立。
(2)当x为负数的时候
x0=1
,有
X=2n−X补n=2n−(x0∗2n−1+x1∗2n−2+...+xn−1∗20)
X=2m−X补m=2m−x0∗(2m−1+2m−2+...+2m−n−1)−(x0∗2n−1+x1∗2n−2+...+xn−1∗20)
把 x0=1 代入上式,化简得:
X=2m−X补m=2m−(2m−2n)−(x0∗2n−1+x1∗2n−2+...+xn−1∗20)
从而1式和2式相等。待证等式左右两边相等。证毕。