软导证明题

1.

·

Negative(I)=2kI

N=i=1ndiRi1

证明进制转化是对的

对于一个数 x=(xnxn1...x1)2 ,有:

x=i=1ndi2i1

即:
x=xn2n1+xn12n2+...+x322+x221+x120

即:
x=23i=4ndi2i4+(x322+x221+x120)80

即:
x=81i=4ndi2i4+(x322+x221+x120)80

即:
x=82i=7ndi2i7+(x322+x221+x120)81+(x322+x221+x120)80

依次类推,可见每三位读取转化为8进制是正确的。

证明负数等于取反加1

已知 Negative(x)=2nx
令y为x每位取反后加1,下证 y=Negative(x) .

x=x02n1+x12n2+...+xn120

y=(1x0)2n1+(1x1)2n2+...+(1xn1)20+1

即:
y=2n1+2n2+...+21+20(x02n1+x12n2+...+xn120)+1

也即:
y=(2n1+2n2+...+21+20+1)(x02n1+x12n2+...+xn120)

由等比数列求和可得:
y=2n(x02n1+x12n2+...+xn120)

即:
y=2nx

所以: y=Negative(x)

证明n位有符号二进制数x向m位有符号二进制数扩展时,使用最高位扩展。

证明:
(1)当x为正数的时候显然成立。
(2)当x为负数的时候 x0=1 ,有

X=2nXn=2n(x02n1+x12n2+...+xn120)

X=2mXm=2mx0(2m1+2m2+...+2mn1)(x02n1+x12n2+...+xn120)

x0=1 代入上式,化简得:
X=2mXm=2m(2m2n)(x02n1+x12n2+...+xn120)

从而1式和2式相等。待证等式左右两边相等。证毕。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值