Codeforce 26C Parquet

本文解析了一道关于使用不同尺寸的砖块铺设地板的模拟题。通过合理的算法设计,实现有效的砖块放置策略,并判断是否可以完全覆盖指定大小的空间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Once Bob decided to lay a parquet floor in his living room. The living room is of size n × m metres. Bob had planks of three types: a planks 1 × 2 meters, b planks 2 × 1 meters, and c planks 2 × 2 meters. Help Bob find out, if it is possible to parquet the living room with such a set of planks, and if it is possible, find one of the possible ways to do so. Bob doesn’t have to use all the planks.
Input
The first input line contains 5 space-separated integer numbers n, m, a, b, c (1 ≤ n, m ≤ 100, 0 ≤ a, b, c ≤ 104), n and m — the living room dimensions, a, b and c — amount of planks 1 × 2, 2 × 1 и 2 × 2 respectively. It’s not allowed to turn the planks.
Output
If it is not possible to parquet the room with such a set of planks, output IMPOSSIBLE. Otherwise output one of the possible ways to parquet the room — output n lines with m lower-case Latin letters each. Two squares with common sides should contain the same letters, if they belong to one and the same plank, and different letters otherwise. Different planks can be marked with one and the same letter (see examples). If the answer is not unique, output any.

题目大意:有n*m的区域,1*2,2*1,2*2的砖块各a,b,c块,若能全部覆盖,则输出一种覆盖情况,否则输出”IMPOSSIBLE”。

一道模拟题?第一次做的时候思路不清晰,结果wa*10,改来改去整个码都乱套了。第二天删了重写,一遍就过了。。。

下面是笨重的AC代码,不过思路很清晰。。。。

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
using namespace std;
char mapp[105][105]={};
char Generating(int len1,int len2){//生成一个字符
    for(int i='a';i<='z';i++){
        if(len1==0&&len2==0){//位于左顶角
            return i;
        }
        else if(len1==0&&len2!=0){//位于第一行
            if(mapp[len1][len2-1]!=i && mapp[len1+1][len2-1]!=i){
                return i;
            }
        }
        else if(len1!=0&&len2==0){//位于第一列
            if(mapp[len1-1][len2]!=i && mapp[len1-1][len2+1]!=i){
                return i;
            }
        }
        else{
            if(mapp[len1-1][len2]!=i && mapp[len1-1][len2+1]!=i && mapp[len1][len2-1]!=i && mapp[len1+1][len2-1]!=i){
                return i;
            }
        }
    }
}
void fill_in_c(int n,int m,int &c){//填满c
    int nn,mm,len1,len2;
    nn=n>>1<<1;
    mm=m>>1<<1;
    len1=0,len2=0;
    for(len1=0;len1+2<=nn&&c>0;len1+=2){
        for(len2=0;len2+2<=mm&&c>0;len2+=2){
            char ch;
            ch=Generating(len1,len2);
            mapp[len1][len2]=mapp[len1][len2+1]=mapp[len1+1][len2]=mapp[len1+1][len2+1]=ch;

            c--;
        }
    }
}
void fill_in_a(int n,int m,int &a){//填满a
    int nn,mm,len1,len2;
    nn=n>>1<<1;
    mm=m>>1<<1;
    len1=0,len2=0;
    for(len1=0;len1+2<=nn&&a>=2;len1+=2){
        for(len2=0;len2+2<=mm&&a>=2;len2+=2){
            if(mapp[len1][len2]!=0)continue;

            char ch;
            ch=Generating(len1,len2);
            mapp[len1][len2]=ch;
            mapp[len1][len2+1]=ch;

            ch=Generating(len1+1,len2);
            mapp[len1+1][len2]=ch;
            mapp[len1+1][len2+1]=ch;

            a-=2;
        }
    }
}
void fill_in_b(int n,int m,int &b){//填满b
    int nn,mm,len1,len2;
    nn=n>>1<<1;
    mm=m>>1<<1;
    len1=0,len2=0;
    for(len1=0;len1+2<=nn&&b>=2;len1+=2){
        for(len2=0;len2+2<=mm&&b>=2;len2+=2){
            if(mapp[len1][len2]!=0)continue;

            char ch;
            ch=Generating(len1,len2);
            mapp[len1][len2]=ch;
            mapp[len1+1][len2]=ch;

            ch=Generating(len1,len2+1);
            mapp[len1][len2+1]=ch;
            mapp[len1+1][len2+1]=ch;

            b-=2;
        }
    }
}
void fill_in_aa(int n,int m,int a){//用a填剩余 行(第n行)
    int len1,len2;
    len1=n-1,len2=0;
    for(len2=0;len2+2<=m&&a>=1;len2+=2){
        char ch;
        ch=Generating(len1,len2);
        mapp[len1][len2]=ch;
        mapp[len1][len2+1]=ch;
        a--;
    }
}
void fill_in_bb(int n,int m,int b){//用b填剩余 列(第m列)
    int len1,len2;
    len1=0,len2=m-1;
    for(len1=0;len1+2<=n&&b>=1;len1+=2){
        char ch;
        ch=Generating(len1,len2);
        mapp[len1][len2]=ch;
        mapp[len1+1][len2]=ch;
        b--;
    }
}
void judge_full(int n,int m){//判断是否填满
    for(int i=0;i<n;i++){
        for(int j=0;j<m;j++){
            if(mapp[i][j]==0){
                printf("IMPOSSIBLE\n");
                return ;
            }
        }
    }
    for(int i=0;i<n;i++){
        for(int j=0;j<m;j++){
            printf("%c",mapp[i][j]);
        }
        printf("\n");
    }
}
int main(){
    int n,m,a,b,c,i,j,k;
    cin>>n>>m>>a>>b>>c;
    memset(mapp,0,sizeof(mapp));
    if(n%2==1&&m%2==1)printf("IMPOSSIBLE\n");
    else if(n*m>a*2+b*2+c*4)printf("IMPOSSIBLE\n");
    else{
            /**
            *a:1*2
            *b:2*1
            *c:2*2
            *
            */
        if(n%2==0&&m%2==0){//行数为偶,列数为偶
            /**
            *按c,a,b的顺序填入
            *
            *判断是否能填满
            */
            fill_in_c(n,m,c);
            fill_in_a(n,m,a);
            fill_in_b(n,m,b);

            judge_full(n,m);
        }
        else if(n%2==0&&m%2==1){//行数为偶,列数为奇
            /**
            *按c,a,b的顺序填入
            *将b填入剩余列
            *
            *在判断是否能填满
            *
            */
            fill_in_c(n,m,c);
            fill_in_a(n,m,a);
            fill_in_b(n,m,b);

            fill_in_bb(n,m,b);

            judge_full(n,m);
        }
        else if(n%2==1&&m%2==0){//行数为奇,列数为偶
            /**
            *按c,b,a的顺序填入
            *将a填入剩余列
            *
            *在判断是否能填满
            *
            */
            fill_in_c(n,m,c);
            fill_in_b(n,m,b);
            fill_in_a(n,m,a);

            fill_in_aa(n,m,a);

            judge_full(n,m);
        }

    }
    return 0;
}

看到有的大牛写了50多行就解决了问题,emmmm
此处应有精简版AC代码(如果没有就是我还没写出来)

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值