动态规划-LCR 166.珠宝的最大价值-力扣(LeetCode)

一、题目解析

frame二维矩阵中每个值代表珠宝的价值,现在从左上角开始拿珠宝,只能向右或向下拿珠宝,到达右下角时停止拿珠宝,要求拿的珠宝价值最大。

二、算法解析

1.状态表示

我们想要知道的是到达[i,j]为位置时的最大价值,所以dp[i][j]表示:到达[i,j]位置时,珠宝的最大价值

2.状态转移方程

依旧根据最近一步划分问题

3.初始化

初始化要确保(1)初始化的值保证后面填表正确(2) 下标的映射关系

观察左边的图,我们能发现带有小圆圈的格子在填表时会发生越界操作,所以只需要加一行加一列即可。都初始化为0 则是保证填值正确,对于小圆圈dp[1][1]的最大价值为i它本身的价值,所以dp[i-1][j]和dp[i][j-1]初始化为0,其他同理,

此时下标的映射关系为dp[i][i]~fraem[i-1][j-1]

4.填表顺序

从左到右,从上到下

5.返回值

返回到达右下角的最大价值,即dp[i][j]

可以动手去自己实现一下,链接:LCR 166. 珠宝的最高价值 - 力扣(LeetCode)

三、代码示例

class Solution {
public:
    int jewelleryValue(vector<vector<int>>& frame) {
        int m = frame.size(),n = frame[0].size();
        vector<vector<int>> dp(m+1,vector<int>(n+1));
        for(int i = 1;i<=m;i++) 
        {
            for(int j = 1;j<=n;j++)
            {
                dp[i][j] =  max(dp[i][j-1]+frame[i-1][j-1],dp[i-1][j]+frame[i-1][j-1]);
            }
        }
        return dp[m][n];
    }
};

 

看到最后,如果对您有所帮助,还请点赞、收藏、关注,点点关注不迷路,我们下期再见! 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值