动态规划-647.回文子串-力扣(LeetCode)

一、题目解析

这里的子字符串是连续的,与之前的子序列不同,这里需要我们统计回文子串的数目。

二、算法原理

这里也有其他算法可以解决该问题,如中心扩展算法 时间复杂度O(N^2)/空间复杂度O(1),马拉车算法(具有局限性) 时间复杂度O(N)/空间复杂度O(N),动态规划 时间复杂度O(N^2)/空间复杂度O(N^2)

我们这里使用动态规划,可以将所有子串是否回文的结果保存在dp表中,通过统计dp就能得到回文子串的数目。

1.状态表示

dp[i][j]:表示s字符串[i,j]的子串,是否为回文子串

2.状态转移方程

 根据最后一步划分状态,s[i]与s[j]是否相等,如不等,则子串不为回文子串;如相等则继续判断

dp[i][j] s[i] != s[j]->false

           s[i] == s[j] i == j->true

                            i+1=j->true

                           dp[i+1][j-1]

这里不会出现越界行为,首先状态表示定义的是[i,j]范围的子串,其次上面包括了相邻和相等的情况,所以是不会有越界问题的

3、初始化

由于我们填写的是bool值,不需要初始化

4、填表顺序

 

5、返回值

我们已经统计好了是否为回文子串,所以只需要记录dp表中true的数量即可。

 这种思路同样适用于其他回文子串问题,建议理解后自己动手实现

647. 回文子串 - 力扣(LeetCode)

三、代码示例

class Solution {
public:
    int countSubstrings(string s) {
        int n = s.size();
        vector<vector<bool>> dp(n,vector<bool>(n));
        for(int i = n-1;i>=0;i--)
        {
            for(int j = i;j<n;j++)
            {
                if(s[i] != s[j]) dp[i][j] = false;
                else
                {
                    if(i == j) dp[i][j] = true;
                    else if(i+1 == j) dp[i][j] = true;
                    else dp[i][j] = dp[i+1][j-1];
                }
            }
        }

        int ret = 0;
        for(int i = 0;i<n;i++)
        {
            for(int j = 0;j<n;j++)
            {
                if(dp[i][j]) ret++;
            }
        }
        return ret;
    }
};

 

看到最后,如果对您有所帮助,还请点赞、收藏和关注,点点关注不迷路,我们下期再见! 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值