Stable Diffusion中的LORA奇旅:梯度累积与截断的艺术表演 ????


在Stable Diffusion的魔法森林深处,藏着一个名叫LORA的小精灵,她以轻盈之姿,巧妙地在庞大模型的枝蔓间跳跃,赋予了模型微调的魔力。今天,我们就来一场说走就走的探险,揭秘LORA模型如何运用梯度累积与截断的绝技,在不惊扰模型巨人的情况下,实现高效且优雅的升级。准备好,这不仅是一场技术的盛宴,更是一次智慧与趣味并存的旅行!

LORA小精灵的自我介绍

LORA基础舞步:轻量级微调的秘密

LORA(Low-Rank Adaptation),这位轻盈的舞者,以其独特的低秩分解技能,能在庞大的预训练模型上实现快速而高效的微调。她的秘诀在于,不是全面改造模型,而是仅通过引入少量额外的参数(称为LORA参数),就能让模型学会新技能,仿佛给模型穿上了一双能够适应各种舞蹈的新鞋。

梯度累积:慢跑中的加速策略

案例一:慢工出细活的智慧

梯度累积,听起来像是一位耐心的园丁,一点点收集每一滴雨露(梯度),最终汇聚成滋润模型成长的甘霖。在训练LORA时,我们可以设置累积步数(accumulation_steps),这意味着模型不会立即更新权重,而是等待几个批次的梯度累积后才执行更新。这样做的好处在于,即使在有限的硬件资源下,也能模拟出较大的批量大小训练效果,从而提升训练稳定性与效率。

accumulation_steps = 8
optimizer = torch.optim.Adam(lora_parameters, lr=learning_rate)

for epoch in range(num_epochs):
    for batch_data in dataloader:
        # 前向传播、计算损失...
        loss.backward()
        
        # 累积梯度
        if (
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DTcode7

客官,赏个铜板吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值