格雷编码是一个二进制数字系统,在该系统中,两个连续的数值仅有一个位数的差异。
给定一个代表编码总位数的非负整数 n,打印其格雷编码序列。格雷编码序列必须以 0 开头。
示例 1:
输入: 2
输出: [0,1,3,2]
解释:
00 - 0
01 - 1
11 - 3
10 - 2
对于给定的 n,其格雷编码序列并不唯一。
例如,[0,2,3,1] 也是一个有效的格雷编码序列。
00 - 0
10 - 2
11 - 3
01 - 1
示例 2:
输入: 0
输出: [0]
解释: 我们定义格雷编码序列必须以 0 开头。
给定编码总位数为 n 的格雷编码序列,其长度为 2n。当 n = 0 时,长度为 20 = 1。
因此,当 n = 0 时,其格雷编码序列为 [0]。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/gray-code
题解一:用dfs对每一位进行尝试改变,最多进行 2^n次变化;
class Solution {
public:
int leap=0;
void work(int pos,int x,int n,int m){
if(pos>=m){ // 找到后停止
leap=1;
return ;
}
for(int i=0;i<n;i++){ // 每一位尝试进行改变
int xx=x;
int d=((1<<i)&x); // 判断当前位是 0 还是 1
if(d) x=(((m-1)^(1<<i))&x); // 当前位是 1 ,将当前为置为 0
else x=(x^(1<<i)); // 当前位是 0 ,将当前为置为 1
if(ss.count(x)){
x=xx;
continue;
}
ss.insert(x);
v.push_back(x);
work(pos+1,x,n,m);
if(leap) return ; // 找到后无须进行下边程序
ss.erase(x); // 下边是还原到前一步
v.pop_back();
x=xx;
}
}
vector<int> grayCode(int n) {
int m=(1<<n);
v.push_back(0);
ss.insert(0);
work(1,0,n,m);
return v;
}
private:
vector<int>v;
set<int>ss; // 避免重复出现在 vector 中
};
题解二:推导找公式,参考:https://leetcode.com/problems/gray-code/discuss/29881/An-accepted-three-line-solution-in-JAVA
公式:G(i) = i^ (i/2)
class Solution {
public:
vector<int> grayCode(int n) {
vector<int>v;
for(int i=0;i<(1<<n);i++)
v.push_back(i^i>>1);
return v;
}
};