欧拉函数-2008 黑客大战

黑客大战

时间限制: C/C++ 1000ms; Java 2000ms 内存限制: 65535KB
通过次数: 21 总提交次数: 71
问题描述

    gscsdlz作为上兰帝国ACM的背后dalao,管理着上兰帝国ACM实验室的所有服务器,当然也是一名不为人知的传奇黑客,一天他又在测试实验室的OJ的安全性,突然发现有人正在对网站攻击,于是gscsdlz开始疯狂反击,在经历几分钟的交手之后,gscsdlz成功地打败了对方,对方当然不肯服输了,于是从OJ的主页找到了gscsdlz的联系方式,并向他发了一封email:

 虽然你在网络攻防上胜过了我,但在算法上我还是非常自信可以打败你的,当然,如果你能解决下面这道题目,我就认输。

 求一个正整数作为分母的绝对值小于1的最简分数的个数。

 gscsdlz作为常年隐蔽在ACM的dalao,当然会做了,于是他也回了一封email:你的题目太简单了,我不仅可以做出来,我还可以求所有分母小于等于n且绝对值小于的1最简分数的个数。

    这当然涉及到黑客的知识盲区了,为了挽回颜面,他找到了身在上兰帝国的你,希望从内部获得答案。


输入描述

只有一个正整数n(1<=1000000)。

输出描述

输出一个数,表示所有分母小于等于n且绝对值小于1的最简分数的个数

样例输入
4
样例输出
10
来源
第三届山西省大学生程序设计大赛
提示

所有满足的最简分数有-3/4,-1/4,-2/3,-1/3,-1/2,1/2,1/3,2/3,1/4,3/4

#include<stdio.h>
#include<string.h>
typedef long long ll;
ll f[1000005];
int main(){
int n;
scanf("%d",&n);

f[1]=1;
memset(f,0,sizeof(f));
for(int i=2;i<=n;i++){
if(f[i])
continue;
for(int j=i;j<=n;j+=i){
if(!f[j])
     f[j]=1ll*j;
   f[j]=1ll*f[j]/i*(i-1);
}
}
for(int i=2;i<=n;i++)
f[i]+=f[i-1];
printf("%lld\n",f[n]*2);
return 0;

欧拉函数(Euler's Totient Function),也称为积性函数,是指小于等于正整数n的数中与n互质的数的个数。我们通常用φ(n)表示欧拉函数。 具体来说,如果n是一个正整数,那么φ(n)表示小于等于n的正整数中与n互质的数的个数。例如,φ(1)=1,因为1是唯一的小于等于1的正整数且1与1互质;φ(2)=1,因为小于等于2的正整数中只有1与2互质;φ(3)=2,因为小于等于3的正整数中与3互质的数是1和2。 欧拉函数的计算方法有很多,下面介绍两种常见的方法: 1. 分解质因数法 将n分解质因数,假设n的质因数分别为p1, p2, …, pk,则φ(n) = n × (1 - 1/p1) × (1 - 1/p2) × … × (1 - 1/pk)。例如,对于n=30,我们将其分解质因数得到30=2×3×5,则φ(30) = 30 × (1-1/2) × (1-1/3) × (1-1/5) = 8。 2. 筛法 我们可以使用筛法(Sieve)来计算欧拉函数。具体地,我们可以先将φ(1)至φ(n)全部初始化为其下标值,然后从2开始遍历到n,将所有能被当前遍历到的数整除的数的欧拉函数值减1即可。例如,对于n=6,我们先初始化φ(1)=1, φ(2)=2, φ(3)=3, φ(4)=4, φ(5)=5, φ(6)=6,然后从2开始遍历,将2的倍数的欧拉函数值减1,即φ(4)=φ(6)=2;然后遍历3,将3的倍数的欧拉函数值减1,即φ(6)=2。最终得到φ(1)=1, φ(2)=1, φ(3)=2, φ(4)=2, φ(5)=4, φ(6)=2。 欧拉函数数论中有很重要的应用,例如RSA算法的安全性就基于欧拉函数的难解性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值