今年的IJCAI增加了金融技术和自然语言处理研讨会(FinNLP 研讨会),主要是分享将NLP技术应用于金融科技领域的研究,探讨未来的研究方向。
参与者来自学术界和工业界,他们提出了几个新的任务,包括业务分类法构建,交易的基本原理和合同消歧、销售预测、股票市场预测、情感分析等等。下面将详细介绍。
1. Business Taxonomy Construction Using Concept-Level Hierarchical Clustering
Haodong Bai,† Frank Z. Xing,‡ Erik Cambria,‡ Win-Bin Huang
本文来自北京大学、南阳理工大学。
投资人在做资本研究和专业决策时,商业分类体系是不可缺少的工具。然而,识别一个新兴市场下的行业结构是非常有挑战的,主要有两个原因,一是现存的分类体系是根据成熟市场来设计的,对于具有新颖商业模型的小公司,可能并没有合适的分类;二是新兴市场发展很快,静态的商业分类体系并不能很好地反应新的特点。本文提出一种新的方法从公司年报中自动构建商业分类体系,提取出来的概念通过贪心affinity传播算法分层次地聚类。我们的方法需要更少的监督信息,并且可以发现新的词项。在中国全国企业股份转让系统市场上的实验表明,我们构建的分类体系有好几个优势,我们的结果提供了一个有效的工具来理解和投资新兴公司。
数据源:从全国中小企业股份转让系统爬取2014-2017年的数据,共21739份年报,涉及10375家公司。已经公开可下载。
效果展示如下图,以教育为例:
2. Towards Disambiguating Contracts for their Successful Execution - A Case from Finance Domain
Preethu Rose Anish, Abhishek Sainani, Nitin Ramrakhiyani, Sachin Pawar, Girish K Palshikar and Smita Ghaisas
本文来自印度TCS研究。
合同管理在金融服务中非常重要,为了在给定场景下最大化参与者的金融利益,合同声明了从事商业活动的准则或行为规范和建议。向卖方授予项目的合同、雇佣合同、租赁协议、特许经营协议、甚至婚前协议都有重大的财务影响。理解合同是实现组织目标的重要步骤,包括建立合规的系统,按时交付交货,避免严厉的处罚并避免昂贵的诉讼。但是,“合同语言”的复杂性使得难以利用他们本该提供的指导。合同是事先根据预测而非实际结果而写的