BZOJ 2618: [Cqoi2006]凸多边形 半平面交

版权声明:想转就转吧,注明出处就行 括弧笑 https://blog.csdn.net/BlackJack_/article/details/79867286

2618: [Cqoi2006]凸多边形

Time Limit: 5 Sec  Memory Limit: 128 MB
Submit: 2141  Solved: 1051
[Submit][Status][Discuss]

Description

逆时针给出n个凸多边形的顶点坐标,求它们交的面积。例如n=2时,两个凸多边形如下图:

则相交部分的面积为5.233。

Input

第一行有一个整数n,表示凸多边形的个数,以下依次描述各个多边形。第i个多边形的第一行包含一个整数mi,表示多边形的边数,以下mi行每行两个整数,逆时针给出各个顶点的坐标。

 

Output

    输出文件仅包含一个实数,表示相交部分的面积,保留三位小数。

 

Sample Input

2
6
-2 0
-1 -2
1 -2
2 0
1 2
-1 2
4
0 -3
1 -1
2 2
-1 0

Sample Output

5.233

HINT

100%的数据满足:2<=n<=10,3<=mi<=50,每维坐标为[-1000,1000]内的整数


bzoj的板子题


#include<cmath>
#include<ctime>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<string>
#include<bitset>
#include<queue>
#include<set>
#include<map>
using namespace std;

typedef double db;
typedef long long ll;

inline int read()
{
	int x=0,f=1;char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
	while(ch<='9'&&ch>='0'){x=x*10+ch-'0';ch=getchar();}
	return x*f;
}
void print(int x)
{if(x<0)putchar('-'),x=-x;if(x>=10)print(x/10);putchar(x%10+'0');}

const int N=510;
const db eps=1e-8;

struct point
{
	db x,y;
	
	friend point operator +(const point &a,const point &b)
	{return (point){a.x+b.x,a.y+b.y};}
	
	friend point operator -(const point &a,const point &b)
	{return (point){a.x-b.x,a.y-b.y};}
	
	friend db dis(const point &a,const point &b)
	{
		point tmp(a-b);
		return sqrt(tmp.x*tmp.x+tmp.y*tmp.y);
	}
	
	friend db cross(const point &x,const point &y,const point &bas)
	{
		point a(x-bas),b(y-bas);
		return a.x*b.y-a.y*b.x;
	}
}p[N],st[N];

struct segment
{
	point X,Y;db angle;
	
	friend bool operator <(const segment &a,const segment &b)
	{
		if(abs(a.angle-b.angle)<eps) return cross(a.Y,b.X,a.X)<0;
		return a.angle<b.angle;
	}
	
	friend point get_insert(const segment &a,const segment &b)
	{
		db S[2];
		point res;
		S[0]=cross(a.X,a.Y,b.X),
		S[1]=cross(a.Y,a.X,b.Y);
		res.x=(b.X.x*S[1]+b.Y.x*S[0])/(S[0]+S[1]),
		res.y=(b.X.y*S[1]+b.Y.y*S[0])/(S[0]+S[1]);
		return res;
	}
	
}seg[N];

int seg_cnt;

inline void add_seg(const point &a,const point &b)
{
	seg[++seg_cnt].X=a,seg[seg_cnt].Y=b;
	seg[seg_cnt].angle=atan2(b.y-a.y,b.x-a.x);
}

bool check(int a,int b,int c)
{
	point tmp(get_insert(seg[a],seg[b]));
	return cross(seg[c].Y,tmp,seg[c].X)<0;
}

int q[N],top;

void hpi()
{
	register int i,head(0),tail(2),tot(1);
	sort(seg+1,seg+1+seg_cnt);
	for(i=2;i<=seg_cnt;++i)
		if(seg[i].angle-seg[tot].angle>eps)
			seg[++tot]=seg[i];
	q[0]=1,q[1]=2;
	for(i=3;i<=tot;++i)
	{
		while(head<tail-1 && check(q[tail-1],q[tail-2],i)) tail--;
		while(head<tail-1 && check(q[head],q[head+1],i)) head++;
		q[tail++]=i;
	}
	while(head<tail-1 && check(q[tail-1],q[tail-2],q[head])) tail--;
	while(head<tail-1 && check(q[head],q[head+1],q[tail-1])) head++;
	if(tail-head>=3) q[tail++]=q[head];
	for(i=head;i<tail-1;++i)
		st[++top]=get_insert(seg[q[i]],seg[q[i+1]]);
}

void solve()
{
	db S(0);
	register int i;
	for(i=2;i<top;++i)
		S+=cross(st[i],st[i+1],st[1]);
	printf("%.3lf\n",S*0.5);
}

int main()
{
	register int T=read(),n,i;
	while(T--)
	{
		n=read();
		for(i=1;i<=n;++i)
			p[i].x=read(),p[i].y=read();
		p[n+1]=p[1];
		for(i=1;i<=n;++i)
			add_seg(p[i],p[i+1]);
	}
	hpi();
	solve();
	return 0;
}

没有更多推荐了,返回首页