机器学习_hadoop探究_wordcount

wordcount在mapreduce里多么经典,我就不多说了

找了一套分析由wordcount分析到hadoop源码的过程,侧重于hdfs

http://radarradar.iteye.com/blog/289247

http://radarradar.iteye.com/blog/289252

http://radarradar.iteye.com/blog/289254

http://radarradar.iteye.com/blog/289257

http://radarradar.iteye.com/blog/289261

这里有一篇关于mapreduce中对combiner理解的文章

http://blog.csdn.net/guoery/article/details/8529004

这里的几篇侧重于input->split->map->combiner->partitioner->shuffle->reducer->output流程的讲解

http://www.cnblogs.com/forfuture1978/archive/2010/11/14/1877086.html

http://www.cnblogs.com/ggjucheng/archive/2012/04/22/2465782.html

基本上应该可以把wordcount以及hadoop运行机制理解清楚了

在这里还是有一个问题,就是wordcount到底是如何对文件split的

网上都说如果没有job.setInputFormat(),默认的就是TextInputFormat,我在代码里追了半天总算找到了

从wordcount开始,F3一顺追下去

Job job = new Job(conf, "word count");

 |

V
this(conf);

 |

V
super(conf, null) super是JobContext 类
JobContext类里的 getInputFormatClass()方法
conf.getClass(INPUT_FORMAT_CLASS_ATTR, TextInputFormat.class);

getClass方法 定义 public Class<?> getClass(String name, Class<?> defaultValue) 

看到没有,如果INPUT_FORMAT_CLASS_ATTR不存在,就用TextInputFormat.class作为默认的InputFormat

转一下虾皮的文件系统分析:http://www.cnblogs.com/xia520pi/archive/2012/05/28/2520813.html

在调试的时候,System.out 和 System.err 只能看到main里的消息,mapper和reducer的消息是看不到的,因为mapper和reducer是在tasktracer也就是slave上实例化的

打印的调试信息可以通过50030端口查看,具体参考:http://blog.csdn.net/azhao_dn/article/details/8003998




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值