elm极限学习机

一、极限学习机的概念

    极限学习机(Extreme Learning Machine) ELM,是由黄广斌提出来的求解单隐层神经网络的算法。

    ELM最大的特点是对于传统的神经网络,尤其是单隐层前馈神经网络(SLFNs),在保证学习精度的前提下比传统的学习算法速度更快。

二、极限学习机的原理

ELM是一种新型的快速学习算法,对于单隐层神经网络,ELM 可以随机初始化输入权重和偏置并得到相应的输出权重。


(选自黄广斌老师的PPT)

对于一个单隐层神经网络(见Figure 1),假设有个任意的样本,其中。对于一个有个隐层节点的单隐层神经网络可以表示为


其中,为激活函数,为输入权重,为输出权重,是第个隐层单元的偏置。表示的内积。


     单隐层神经网络学习的目标是使得输出的误差最小,可以表示为


即存在,使得


可以矩阵表示为


其中,是隐层节点的输出,为输出权重,为期望输出。



为了能够训练单隐层神经网络,我们希望得到,使得


其中,,这等价于最小化损失函数


传统的一些基于梯度下降法的算法,可以用来求解这样的问题,但是基本的基于梯度的学习算法需要在迭代的过程中调整所有参数。而在ELM算法中, 一旦输入权重和隐层的偏置被随确定,隐层的输出矩阵就被唯一确定。训练单隐层神经网络可以转化为求解一个线性系统。并且输出权重可以被确定


其中,是矩阵的Moore-Penrose广义逆。且可证明求得的解的范数是最小的并且唯一。

原文地址:http://blog.csdn.net/google19890102/article/details/18222103

 A(:,1:2);%特征
label = A(:,3);%标签

[N,n] = size(data);

L = 100;%隐层节点个数
m = 2;%要分的类别数

%--初始化权重和偏置矩阵
W = rand(n,L)*2-1;
b_1 = rand(1,L);
ind = ones(N,1);
b = b_1(ind,:);%扩充成N*L的矩阵

tempH = data*W+b;
H = g(tempH);%得到H

%对输出做处理
temp_T=zeros(N,m);
for i = 1:N
    if label(i,:) == 0
        temp_T(i,1) = 1;
    else 
        temp_T(i,2) = 1;
    end    
end
T = temp_T*2-1;

outputWeight = pinv(H)*T;

%--画出图形
x_1 = data(:,1);  
x_2 = data(:,2);  
hold on  
for i = 1 : N  
    if label(i,:) == 0  
        plot(x_1(i,:),x_2(i,:),'.g');  
    else  
        plot(x_1(i,:),x_2(i,:),'.r');  
    end  
end

output = H * outputWeight;
%---计算错误率
tempCorrect=0;
for i = 1:N
    [maxNum,index] = max(output(i,:));
    index = index-1;
    if index == label(i,:);
        tempCorrect = tempCorrect+1;
    end
end

e

function [ H ] = g( X )
    H = 1 ./ (1 + exp(-X));
end
 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值