machine learning
blacklee123
先思考再行动
展开
-
核函数方法
核函数方法简介(1)核函数发展历史 早在1964年Aizermann等在势函数方法的研究中就将该技术引入到机器学习领域,但是直到1992年Vapnik等利用该技术成功地将线性SVMs推广到非线性SVMs时其潜力才得以充分挖掘。而核函数的理论则更为古老,Mercer定理可以追溯到1909年,再生核希尔伯特空间(ReproducingKernel Hilbert Space, R转载 2014-04-17 15:21:41 · 1555 阅读 · 0 评论 -
开源学习 Rweka
今天在找关联规则相关的资料时候,无意发现R语言中文论坛,虽然里面的资料有限,但是很有价值,譬如RWeka,一种开源的机器学习工具,在此予以介绍:背景介绍: #此前在首页部分显示#1)Weka:Weka有两种意思:一种不会飞的鸟的名字,一个机器学习开源项目的简称(Waikato Environment for Knowledge Analysis,http://www.cs.waikat转载 2014-06-19 13:19:04 · 946 阅读 · 0 评论 -
自编码器和深度学习
自编码算法与稀疏性目前为止,我们已经讨论了神经网络在有监督学习中的应用。在有监督学习中,训练样本是有类别标签的。现在假设我们只有一个没有带类别标签的训练样本集合 ,其中 。自编码神经网络是一种无监督学习算法,它使用了反向传播算法,并让目标值等于输入值,比如 。下图是一个自编码神经网络的示例。自编码神经网络尝试学习一个 的函数。换句话说,它尝试逼近一个转载 2014-06-05 08:55:15 · 11742 阅读 · 0 评论 -
神经网络
神经元:在神经网络的模型中,神经元可以表示如下神经元的左边是其输入,包括变量x1、x2、x3与常数项1,右边是神经元的输出 神经元的输出函数被称为激活函数(activation function),输出值被称为激活值(activation value)。激活函数有很多种,其中最简单的莫过于sigmoid函数。除非特别声明,否则博客里提转载 2014-06-05 09:19:38 · 1004 阅读 · 0 评论 -
逻辑回归logistic regression
逻辑回归主要用于解决分类问题,在现实中有更多的运用,正常邮件or垃圾邮件车or行人涨价or不涨价用我们EE的例子就是:高电平or低电平 同时逻辑回归也是后面神经网络到深度学习的基础。 (原来编辑器就有分割线的功能啊……)一、Logistic Function(逻辑方程)同线性回归,我们会有一个Hypothe转载 2014-06-05 09:16:55 · 1004 阅读 · 0 评论 -
线性回归及梯度下降法
一、线性回归线性回归主要运用于“预测”类问题:假设我们有一堆的数据(房间大小,房价)。给定一个没见过的房间大小,它的价格应该怎么估计呢? 一般来说,我们可以假定房价h(x)和大小x之间存在一种线性关系。求出最优h(x)后,对于每一个大小x的房间,我们都可以给出一个估价h(x) 概念:COST FUNCTION(代价函数)转载 2014-06-05 08:57:02 · 1028 阅读 · 0 评论 -
SVM
课程文本分类project SVM算法入门转自:http://www.blogjava.net/zhenandaci/category/31868.html(一)SVM的简介支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机转载 2014-04-24 17:13:19 · 886 阅读 · 0 评论 -
随机森林Random Forest
引言在机器学习中,随机森林由许多的决策树组成,因为这些决策树的形成采用了随机的方法,因此也叫做随机决策树。随机森林中的树之间是没有关联的。当测试数据进入随机森林时,其实就是让每一颗决策树进行分类,最后取所有决策树中分类结果最多的那类为最终的结果。因此随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。随机森林可以既可以处理属性为离散值的量,如ID3算法转载 2014-05-10 11:29:22 · 1489 阅读 · 1 评论 -
贝叶斯(Bayes)决策理论
贝叶斯决策理论方法所讨论的问题是:已知总共有c类物体,也就是说待识别物体属于这c类中的一个类别,对这c类不同的物理对象,以及各类在这d维特征空间的统计分布,具体说来是各类别ωi=1,2,…,c的先验概率P(ωi)及类条件概率密度函数p(x|ωi)已知的条件下,如何对某一样本按其特征向量分类的问题。由于属于不同类的待识别对象存在着呈现相同观察值的可能,即所观察到的某一样本的特征向量为X,而在转载 2014-04-23 23:06:54 · 3800 阅读 · 0 评论 -
R语言多元分析系列汇总
R语言多元分析系列之一:主成分分析 主成分分析(principal components analysis, PCA)是一种分析、简化数据集的技术。它把原始数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分转载 2014-04-08 17:13:05 · 5961 阅读 · 0 评论 -
贝叶斯决策
贝叶斯决策理论方法在进行分类时要求:(1)各类别的总体概率密度函数的分布是已知的;(2)要决策分类的类别数数是一定的特征空间、特征向量、先验概率、类条件概率密度函数、出发点:概率的不同分类决策与相应的决策代价之间的定量折中假定:所有的有关的概率结构已知-->基于常识的判别过程几种常见的决策规则1)基于最小错误率的贝叶斯决策实质:通过观察x把状态的先验概率P(转载 2014-04-17 09:16:10 · 1724 阅读 · 0 评论 -
elm极限学习机
一、极限学习机的概念 极限学习机(Extreme Learning Machine) ELM,是由黄广斌提出来的求解单隐层神经网络的算法。 ELM最大的特点是对于传统的神经网络,尤其是单隐层前馈神经网络(SLFNs),在保证学习精度的前提下比传统的学习算法速度更快。二、极限学习机的原理ELM是一种新型的快速学习算法,对于单隐层神经网络,ELM 可以随机初始化输入权重和偏转载 2014-07-14 16:00:09 · 2330 阅读 · 0 评论