POJ
文章平均质量分 59
hitrose27
熟男
展开
-
POJ1088动态规划+递归解题报告
题目链接:摸我看完题目会有一些比较直观的想法,显然是用DP,迭代公式也比较好想,f(i,j) = max{ f(i-1,j), f(i+1,j), f(i,j-1), f(i,j-1) } + 1在上述公式中要注意的是当且仅当周围的点比当前点小的时候才能列入计算的表达式中。为了让搜索更为迅速,我给数据增加了边界,并且由于采用了迭代的方式,对DP数组中的数值设置了Unprocessed和Processing两个值,只有未处理的节点才会进行迭代计算。废话不多说,代码如下://POJ1088滑雪(动态规划之)原创 2011-03-24 14:37:00 · 907 阅读 · 0 评论 -
POJ1905解题报告
<br />题目链接<br /> <br />题目的那点在于如何求解角度,这里采用的方法是二分求解:一般地,对于函数f(x),如果存在实数c,当x=c时f(c)=0,那么把x=c叫做函数f(x)的零点。 <br /> 解方程即要求f(x)的所有零点。 <br /> 先找到a、b,使f(a),f(b)异号,说明在区间(a,b)内一定有零点,然后求f[(a+b)/2], <br /> 现在假设f(a)<0,f(b)>0,a<b <br /> ①如果f[(a+b)/2]=0,该点就是零点,原创 2011-03-23 14:24:00 · 734 阅读 · 0 评论 -
POJ2513解题报告
POJ2513题目链接 以为是很简单的字典树……哭…… 欧拉回路以前貌似用过,还有一点印象,并查集是真的没有用过,各种搜索,附一些链接,并写写自己的总结~ 欧拉回路: 1 定义 欧拉通路 (欧拉迹) ——通过图中每条边一次且仅一次,并且过每一顶点的通路。 欧拉回路 (欧拉闭迹) ——通过图中每条边一次且仅一次,并且过每一顶点的回路。 欧拉图 ——存在欧拉回路原创 2011-03-21 21:10:00 · 1183 阅读 · 0 评论 -
POJ2299解题报告
题目链接 这道题目的关键因素就在于理解“相邻”这个概念,否则题目的第一个例子的最小交换次数应该为2: 49,然后0交换。 根据这种理解,可以把该问题抽象出来:其实是为了求解逆序数(这个链接中也含有该题的源代码,稍微改改就能用)。 如果采用简单的比较来进行查找,肯定会超时,因此引入了归并排序的思想,借用算法导论中的话,“可以简单的把归并排序的合并操作理解为两堆已经排好序的扑克,均为面朝上,每原创 2011-03-18 18:13:00 · 906 阅读 · 0 评论 -
POJ_2479
#include #include int data[50001]; int b1[50001]; int main() { int N,K,i,j,max1,max2,max,a,b; scanf("%d",&K); while (K--) { scanf("%d",&N); for(i = 0;i<N;++i) scanf("%d",&data[i]); ma原创 2010-10-25 12:11:00 · 718 阅读 · 0 评论 -
POJ1050二维数组的最大子数组和
#include #include int data[101][101]; int DP[101]; int main() { int N; scanf("%d",&N); for (int i = 0;i<N;++i) for (int j = 0;j<N;++j) scanf("%d",&data[i][j]); int max = 0; for (int k=0;k<N;++k) {原创 2010-10-25 09:36:00 · 968 阅读 · 0 评论