杂货铺
文章平均质量分 82
关于计算机、数学的杂文
bleedingfight
用最少的资源搬最多的砖!
展开
-
K3 LEDE踩坑专题
先说一下我说明一些我的配置,我的是k3,260。昨天按照蓝点网上面的配置刷了lean的lede r7 具体步骤: 1. 关闭路由器(10s我不明白为什么是10s,一般我关掉就直接打开电源没有等10s)。然后用一个叫做RoutAckProV1B2的软件打开telnet(按照教程通常一次成功,不行的话就多试几次)然后关闭该软件RoutAckProV1B2。 2. 打开putty(设置一个远程登录软原创 2017-12-23 21:17:44 · 7465 阅读 · 2 评论 -
LEDE SAMBA
安装luci sambaopkg install luci-i18n-samba-zh-cn在LEDE服务-网络共享-编辑模板配置 - unix charset = UTF-8 - # invalid users = root - security = user - map to guest = Bad User 共享目录 LEDE_SAMBA /mnt/sda root 只读 75转载 2017-12-24 00:52:05 · 1551 阅读 · 0 评论 -
数字信号处理笔记
-离散傅里叶变换的性质 - 公式一: X(ejw)=∑r=+∞r=−∞2πδ(w−w0+2πr)−→−F−1∑+∞−∞ejw0nX(e^{jw})=\sum_{r=-\infty}^{r=+\infty}2\pi\delta(w-w_0+2\pi r) \xrightarrow{\mathscr{F}^{-1}}\sum_{-\infty}^{+\infty}e^{jw_0n} ∑+∞−∞ej原创 2016-01-02 00:54:03 · 1595 阅读 · 0 评论 -
DSP
变换间的关系X(z)|z=esT=X^a(s)=1TΣ∞k=−∞Xa(s−jkΩs)=1TΣ∞k=−∞Xa(s−j2πTk)X(z)|_{z=e^{sT}}=\hat{X}_a(s)=\frac{1}{T}\Sigma_{k=-\infty}^{\infty}X_a{(s-jk\Omega_s)}=\frac{1}{T}\Sigma_{k=-\infty}^{\infty}X_a{(s-j\frac原创 2016-04-04 17:49:41 · 492 阅读 · 0 评论 -
用Modelsim SE 10.1a进行仿真的大致步骤
系统windows10 64bit,modesim SE 10.1c 64bit以4bit加法器为例1.新建工程project,File->New->Project,选择好Project文件路径(Project Loacation)(默认win64)和文件名(add_4)。 2.在下一步到Create New File(输入自己Verilog文件名称add_4)->Add file as typ原创 2016-03-05 18:38:35 · 12243 阅读 · 1 评论 -
k3折腾梅林
我的机器情况:初始固件260版本。重来没有折腾什么cfe降级之类的操作,我上车的时候已经是260的版本了,刷完重写分区后使用tb刷lede(具体查看我的另一篇帖子)。刷上了LEDE。闪存什么的不是三星的,据说三星的不能按软件中心,这点有点小幸运。先说一下为什么装梅林,前前后后使用的路由器版本基本上包含了当前流行的所有系统。k2的时候潘多拉很好用,功能强大,但是在k3后没有了潘多拉,取而代...原创 2020-12-23 17:00:42 · 5002 阅读 · 0 评论 -
MATLAB GUI常用函数使用
MATLAB GUI常用函数使用uigetfile('FileterSpec','DialogTitle','DefaultName','Location',[x,y],'MultiSelect',selectmode)FilterSpec:决定对话框文件的初始显示,如’.m’列出所有的M文件* DialogTitle:对话框标题的字符串 DefaultName:以像素为单位的参数x,y定义对话原创 2016-01-26 16:52:33 · 2834 阅读 · 0 评论 -
MATLAB GUI
testgui.mfunction varargout = testgui(varargin)% TESTGUI MATLAB code for testgui.fig% TESTGUI, by itself, creates a new TESTGUI or raises the existing% singleton*.%% H = TESTGUI ret原创 2016-01-19 21:02:40 · 916 阅读 · 0 评论 -
Laplace变换性质
1tf′(t)→Laplace\frac{1}{t}f\prime(t)\rightarrow Laplace F(s)=∫+∞0f(t)e−StdtF(s)=\int_0^{+\infty}f(t)e^{-St}dt ∫+∞0f′(t)e−Stdt=∫∞0e−Stdf(t)=f(t)e−St∣t=+∞t=0+S∫+∞0f(t)e−Stdt=−f(0)+SF(S)\int_0^{+\infty}原创 2016-01-01 18:35:44 · 1047 阅读 · 0 评论 -
离散系统的响应
滑动平均系统 系统的表达式 H(ejw)=1M2+11−ejw(M2+1)1−e−jwH(e^{jw})=\frac{1}{M_{2}+1}\frac{1-e^{jw(M_2+1)}}{1-e^{-jw}}clcclearsyms w M2y=1/(M2+1)*exp(-j*w*M2/2)*sin((M2+1)*w/2)/(sin(w/2));y=subs(y,M2,4);subplo原创 2016-01-01 13:36:32 · 1698 阅读 · 0 评论 -
平方和级数求和
证明函数的∑i=ni=0i2=n(2n+1)(n+1)6\sum_{i=0}^{i=n}i^2=\frac{n(2n+1)(n+1)}{6}用差分方程解释: y(n)−y(n−1)=n2y(n)-y(n-1)=n^2 y(n−1)−y(n−2)=(n−1)2y(n-1)-y(n-2)=(n-1)^2 y(n−2)−y(n−3)=(n−2)2y(n-2)-y(n-3)=(n-2)^2 ….原创 2015-12-31 20:13:52 · 8575 阅读 · 0 评论