欧拉函数(新)

欧拉函数 φ \varphi φ 的定义, φ ( i ) \varphi(i) φ(i) 表示从 [ 1 , i ] [1, i] [1,i] 之间和 i i i 互质的数的数量 ( a a a b b b 互质即 gcd ⁡ ( a , b ) = 1 \gcd(a, b) = 1 gcd(a,b)=1)。欧拉函数是积性函数,例如 a , b a, b a,b 都为质数,那么 φ ( a b ) = φ ( a ) × φ ( b ) φ(ab) = φ(a) \times φ(b) φ(ab)=φ(a)×φ(b),递推式为
φ ( a b ) = φ ( a ) × φ ( b ) × gcd ⁡ ( a , b ) φ ( gcd ⁡ ( a , b ) ) φ(ab) = \frac {φ(a) \times φ(b) \times \gcd(a,b)}{φ(\gcd(a,b))} φ(ab)=φ(gcd(a,b))φ(a)×φ(b)×gcd(a,b)
(证明暂时搁置)

设一个数 N N N 可得
N = p 1 b 1 × p 2 b 2 × p 3 b 3 × … × p k b k p 为质数 N = p_1^{b_1} \times p_{2}^{b_2} \times p_{3}^{b_3} \times \ldots \times p_{k}^{b_k} \quad p为质数 N=p1b1×p2b2×p3b3××pkbkp为质数
因为
KaTeX parse error: Undefined control sequence: \displaylines at position 2: \̲d̲i̲s̲p̲l̲a̲y̲l̲i̲n̲e̲s̲{ \varphi(N) = …

还因为 [ 1 , p b ] [1, p^b] [1,pb] 一共有 p b p^b pb 个数,不和 p b p^b pb 互质的数有 1 × p , 2 × p , 3 × p , … , p b − 1 × p 1 \times p, 2 \times p, 3 \times p, \ldots, p^{b-1} \times p 1×p,2×p,3×p,,pb1×p , 总共 p b − 1 p^{b-1} pb1 个, 剩下的就是满足要求的即 p b − p b − 1 p^b - p^{b-1} pbpb1 个数。


φ ( p b ) = p b × ( 1 − 1 p ) φ(p^b) = p^b \times (1 - \frac{1}{p}) φ(pb)=pb×(1p1)
可得
φ ( N ) = p 1 b 1 × ( 1 − 1 p 1 ) ∗ p 2 b 2 ∗ ( 1 − 1 p 2 ) × … p k b k ∗ ( 1 − 1 p k ) \varphi(N) = p_1^{b_1} \times (1 - \frac{1}{p_1}) * p_2^{b_2} * (1 - \frac{1}{p_2}) \times \ldots p_k^{b_k} * (1 - \frac{1}{p_k}) φ(N)=p1b1×(1p11)p2b2(1p21)×pkbk(1pk1)
就等于
φ ( N ) = ( p 1 b 1 × p 2 b 2 × … ∗ p k b k ) × ( 1 − 1 p 1 ) ∗ ( 1 − 1 p 2 ) × … × ( 1 − 1 p k ) \varphi(N) = (p_1^{b_1} \times p_2^{b_2} \times \ldots * p_k^{b_k}) \times (1 - \frac{1}{p_1}) * (1 - \frac{1}{p_2}) \times \ldots \times (1 - \frac{1}{pk}) φ(N)=(p1b1×p2b2×pkbk)×(1p11)(1p21)××(1pk1)
又因为
N = p 1 b 1 ∗ p 2 b 2 ∗ . . . ∗ p k b k N = p1^b1 * p2^b2 * ... * pk^bk N=p1b1p2b2...pkbk
可得
φ ( N ) = N ∗ ( 1 − 1 p 1 ) × ( 1 − 1 p 2 ) × … × ( 1 − 1 p k ) \varphi(N) = N * (1 - \frac{1}{p_1}) \times (1 - \frac{1}{p_2}) \times \ldots \times (1 - \frac{1}{p_k}) φ(N)=N(1p11)×(1p21)××(1pk1)
就可以通过分解 N N N 的质因数求出来 φ ( N ) \varphi(N) φ(N),由此也可以看出,一个数的欧拉函数的大小和质数的次幂无关。

试除法分解质因数是 O ( n ) O(\sqrt n) O(n ) 的, 所以求 φ ( N ) \varphi(N) φ(N) 也就是 O ( n ) O(\sqrt n) O(n )
具体见代码

#include <iostream>
#include <algorithm>
#include <cstring>

using namespace std;

int n, m;

int main()
{
    int T;
    cin >> T;
    while (T -- )
    {
        cin >> n;
        int res = n;
        for (int i = 2; i <= n / i; i ++ )
        {
            if (n % i == 0) 
            {
                res = res / i * (i - 1); // 相当于res * (1 - 1 / i), 这样是为了防止出现小数, 下取整没了, 最主要的就是这里
                while (n % i == 0) n /= i;
            }
        }
        if (n != 1) res = res / n * (n - 1); // 这里不要忘记
        cout << res << endl;
    }
    return 0;
}

一个数欧拉函数的大小和质因数次幂无关

筛法求欧拉函数

O ( n ) O(n) O(n)
这里写的注释很好,就不多重打了。
是用线性筛顺便筛出欧拉函数,首先,线性筛可以筛出质数 p,质数的欧拉函数很好求,因为一个质数在 [ 1 , p ] [1, p] [1,p] 中除了 p 本身以外,其他所有数都与它互质,所以 φ ( p ) = p − 1 \varphi(p) = p - 1 φ(p)=p1
而对于筛掉的数,我们可以知道,筛掉的数是用这个数 u 的最小质因子 p 筛去的,唉?质因子是质数吧,按算法运行顺序来说, u 是由 p × i p \times i p×i 得到的,那么 i 是整数,且肯定比 u 小,按理说,它的欧拉函数我已经求出来了。而 φ ( p ) = p − 1 \varphi(p) = p - 1 φ(p)=p1,我们还知道一个等式。

φ ( a b ) = φ ( a ) × φ ( b ) × gcd ⁡ ( a , b ) φ ( gcd ⁡ ( a , b ) ) \varphi(ab) = \frac {φ(a) \times φ(b) \times \gcd(a,b)}{φ(\gcd(a,b))} φ(ab)=φ(gcd(a,b))φ(a)×φ(b)×gcd(a,b)
那么就可以得出来了
φ ( u ) = φ ( i × p ) = φ ( p ) × φ ( i ) × gcd ⁡ ( p , i ) φ ( gcd ⁡ ( i , p ) ) \varphi(u) = \varphi(i \times p) = \frac {\varphi(p) \times \varphi(i) \times \gcd(p,i)}{\varphi(\gcd(i,p))} φ(u)=φ(i×p)=φ(gcd(i,p))φ(p)×φ(i)×gcd(p,i)

其中因为 p p p 是质数,而 p < = i p <= i p<=i ,并且 p 是 i 的质因子,所以 gcd ⁡ ( i , p ) = p \gcd(i,p) = p gcd(i,p)=p,所以 φ ( gcd ⁡ ( p , i ) ) = φ ( p ) \varphi(\gcd(p,i)) = \varphi(p) φ(gcd(p,i))=φ(p)
所以有下式
φ ( u ) = φ ( i × p ) = p × φ ( i ) \varphi(u) = \varphi(i \times p) = {p \times \varphi(i)} φ(u)=φ(i×p)=p×φ(i)

在注释里还有一种解释方法,这里就不说了。

/*
    线性筛可以求出很多附加的东西
    具体会在代码里写注释
*/

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

typedef long long LL;

const int N = 1000010;

int n;
int primes[N], cnt;
bool st[N];
int phi[N]; // phi[i] 是i的欧拉函数
LL sum;

int main()
{
    cin >> n;
    phi[1] = 1; // 1的欧拉函数是1, 需要手动写上
    for (int i = 2; i <= n; i ++ )
    {
        if (st[i] == 0)
        {
            primes[ ++ cnt] = i;
            sum += phi[i] = i - 1; // 首先如果i是质数, 质数和所有数都互质(除了它自己), 那么对于质数i的φ, 就是i - 1
        }
        for (int j = 1; primes[j] <= n / i; j ++ )
        {
            st[i * primes[j]] = true;
            if (i % primes[j] == 0) // 如果i % pj == 0 那么pj就是i的最小质因数(这点在线性筛里提到过)
            { // 说明i的质因数包括pj, 那么φ(i)里面包括 (1 - 1/pj), 一个数欧拉函数的大小和其质因数的次幂无关, 根据φ(N) = N * (1 - 1/p1) * (1 - 1/p2) * ... * (1 - 1/pk);
                sum += phi[i * primes[j]] = phi[i] * primes[j]; // pj * i 比 i 只多了一个pj而且pj还在i的质因数里面, 那么 φ(i*pj)只比φ(i)多一个pj 也就是 φ(i*pj) = φ(i) * pj
                break;
            }
            sum += phi[i * primes[j]] = phi[i] * (primes[j] - 1); // 和上面同理, 但是pj不是i的质因数, 所以φ(i) 不包含 (1 - 1/pj), φ(pj*i)需要加上这个 
        }
    }
    cout << sum + 1 << endl;
    
    return 0;
}
  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值