自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 计算机视觉(三)——图像拼接

计算图像之间的变换结构:·提取特征点·生成描述子·特征匹配·计算变换结构like this将图像变换到目标坐标系变换后融合/合成多图场景时就重复上述过程。

2023-05-05 11:04:00 1030

原创 计算机视觉——角点检测

Harris角点检测概念:总的来说就是当图像灰度发生明显变化时,这个点就是角点,角点对掌握目标的轮廓特征具有决定作用判断角点的方法:分别对平均区域、边缘区域、角落区域进行计算,观察结果: 取最小值,边缘特征值就会为0,可以使边缘与角点区分开来。这种方法的缺点:窗口滑动只有8个方向,当边缘角落的角度不落在这8个方向则检测不准。数学定义: 公式化简:泰勒公式回顾: 遇到的问题:未安装PCV库,参考下面这个博客(44条消息) 【python】python中PCV库安装的方法步骤_python安装p

2023-04-19 09:55:37 270

原创 计算机视觉实验1

两段代码的区别是下面的这个少了一个cv2.nameWindow('Demo'),当我运行上面这段代码的时候,会出现nameWindow的报错,但是把这一句删去就不会报错,(对了还要把waitkey里面的0删掉,不然会报错)2.resize()方法不会改变对象的大小,只会返回一个新的Image对象,而thumbnail()方法会直接改变对象的大小,返回值为none;maxLevel: 控制所绘制的轮廓层次的深度,为0则表示第0层的轮廓,为其他的非零正数则表示绘制最高层及以下的相同数量层级的轮廓。

2023-03-23 10:52:05 429

原创 机器学习——logistic回归知识准备

z=0是两个分类(0和1)的分界处,所以,设定横坐标为x1,纵坐标为x2,这个方程的位置参数是w0,w1,w2,,也就是我们求的回归系数(最优参数),已经求解出的就是回归系数[w0,w1,w2],通过系数就可以确定不同数据之间的分割线,画出决策边界。梯度上升算法需要每次都遍历一次数据集,当数据集小的时候可以,但是当数据集很大的时候,机如果是数十亿、数百万的时候,那么该计算方法的计算复杂度就太高了。由于改进的随机梯度上升算法,随机选取样本点,所以每次的运行结果是不同的。改进的随机梯度上升算法收敛效果更好。

2022-12-11 18:09:52 308

原创 机器学习——朴素贝叶斯代码实现

代码:链接:https://pan.baidu.com/s/17Cm6Yq99WCT3XB0D19fqGA?pwd=3kfh提取码:3kfh运行结果:判断是正常邮件还是垃圾邮件的概率:判断的结果:反思。

2022-11-30 11:44:18 432

原创 机器学习——朴素贝叶斯原理(知识基础)

已知袋子里有m个黑球,n个白球,摸一个球摸出黑球的概率是多大?:一个未知的袋子里有一些黑球和白球,随机摸出一个或者好几个球,观察摸出的球可以对袋子里的黑球白球的比例做出什么样的推测?朴素贝叶斯要解决的问题就是如何求逆向概率:已知学校中的60%的人是男生,40%的人是女生,其中男生总是穿着长裤,女生则一半穿长裤,一半穿裙子。正向概率:随机选择一个男生或者女生,她/他穿长裤/长裙的概率是多少?逆向概率:迎面走来一个穿长裤的人,不能确定ta的性别,你能推断出ta是男生/女生的概率是多少?

2022-11-30 10:36:32 488

原创 机器学习2——创建决策树以及实现分类的代码实现

【代码】机器学习2——创建决策树以及实现分类的代码实现。

2022-11-18 13:39:03 623

原创 机器学习-决策树1基础知识准备

那肯定是选择是否大于15岁比较好。在筛选的时候,肯定是能筛出更多的分类是最好的。在算法中,很多时候我们可以借助数学公式来简便计算,在以后的学习当中我们会经常用到对数函数:在A的方案中,左边分类的结果里取出红圈的概率是75%,在B的方案中,左边取出红圈的概率是100%,体现到公式里,概率越大,东西越纯,越接近0,熵值越小。也就是说,在分类之前,熵值为c,分类之后,A方案的熵值为a,B方案的熵值为b,AB两个方案的熵值跟原来相比,都减小了,但是B方案的熵值更小,所以最终选B方案,这也就是信息增益是如何去做的。

2022-11-18 13:21:48 532

原创 机器学习——K近邻算法

存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说,只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后选择k个最相似数据的中出现次数最多的分类,作为新数据的分类。

2022-11-06 16:51:56 551 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除