[莫比乌斯反演]莫比乌斯函数

本文详细介绍了莫比乌斯函数的概念、性质和常见公式,并通过实例展示了如何利用莫比乌斯反演解决算法问题。讨论了埃氏筛、欧拉筛和杜教筛等求解莫比乌斯函数的方法,适合算法和数学爱好者深入学习。
摘要由CSDN通过智能技术生成
莫比乌斯函数定义

μ ( n ) = { 1 n = 1 ( − 1 ) k n = p 1 p 2 p 3 … p k 0 p 2 ∣ n \mu(n)=\begin{cases}1&n=1\\(-1)^k&n=p_1p_2p_3…p_k\\0&p^2|n\end{cases} μ(n)= 1(1)k0n=1n=p1p2p3pkp2n

其中所有的 p p p都是关于 n n n的质因数

莫比乌斯函数性质

∑ d ∣ n μ ( d ) = [ n = 1 ] \sum\limits_{d|n}\mu(d)=[n=1] dnμ(d)=[n=1]

其中方括号是艾佛森表示法,类似于条件表达式,当表达式成立时表达式的值为 1 1 1,否则表达式的值为 0 0 0

n = 1 n=1 n=1时,可以直接计算得出 ∑ d ∣ 1 μ ( d ) = μ ( 1 ) = 1 \sum\limits_{d|1}\mu(d)=\mu(1)=1 d∣1μ(d)=μ(1)=1

n ≠ 1 n\neq 1 n=1时,对 n n n进行质因数分解可以得到 n = p 1 a 1 p 2 a 2 p 3 a 3 ⋯ p k a k n=p_1^{a_1}p_2^{a_2}p_3^{a_3}\cdots p_k^{a_k} n=p1a1p2a2p3a3pkak

此时 d d d质因数分解后,若有任何的 a a a大于 1 1 1的情况,那么此时的 μ ( d ) = 0 \mu(d)=0 μ(d)=0,并不会对结果造成任何的影响

我们设 m = p 1 p 2 p 3 ⋯ p k m=p_1p_2p_3\cdots p_k m=p1p2p3pk

可得 ∑ d ∣ m μ ( d ) = ∑ d ∣ n μ ( d ) \sum\limits_{d|m}\mu(d)=\sum\limits_{d|n}\mu(d) dmμ(d)=dnμ(d)

因为现在的 m m m是由不同的质因数乘积而成的

所以 m m m的因数 d d d t ( t ≤ k ) t(t\leq k) t(tk) m m m的不同的质因数乘积而成

那么此时的 μ ( d ) \mu(d) μ(d)值为 ( − 1 ) t (-1)^t (1)t

这样的 t t t值有 C k t C_k^t Ckt

因此 ∑ d ∣ m μ ( d ) = ∑ t = 1 k C k t ( − 1 ) t \sum\limits_{d|m}\mu(d)=\sum\limits_{t=1}^{k}C_k^t(-1)^t

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值