我们设已知点为 A ( X 1 , Y 1 ) A(X_1,Y_1) A(X1,Y1), B ( X 2 , Y 2 ) B(X_2,Y_2) B(X2,Y2)
它们的 X X X坐标差为 X = X 2 − X 1 X=X_2-X_1 X=X2−X1 它们的 Y Y Y坐标差为 Y = Y 2 − Y 1 Y=Y_2-Y_1 Y=Y2−Y1
那么我们目前可以得出这样的解析式: y = Y X x + c y=\frac{Y}{X}x+c y=XYx+c
y y y 轴与直线的交点(如上图点 C C C)的 y y y坐标与 c c c相等
A ( X 1 , Y 1 ) ⇒ C ( 0 , Y 1 − Y X X 1 ) A(X_1,Y_1)\Rarr C(0,Y_1-\frac{Y}{X}X_1) A(X1,Y1)⇒C(0,Y1−XYX1)
Y 1 − Y X X 1 Y_1-\frac{Y}{X}X_1 Y1−XYX1
⇒ Y 1 − Y 2 − Y 1 X 2 − X 1 X 1 \Rarr Y_1-\frac{Y_2-Y_1}{X_2-X_1}X_1 ⇒Y1−X2−X1Y2−Y1X1
⇒ ( X 2 − X 1 ) Y 1 − ( Y 2 − Y 1 ) X 1 X 2 − X 1 \Rarr \frac{(X_2-X_1)Y_1-(Y_2-Y_1)X_1}{X_2-X_1} ⇒X2−X1(X2−X1)Y1−(Y2−Y1)X1
⇒ X 2 ∗ Y 1 − X 1 ∗ Y 1 − Y 2 ∗ X 1 + Y 1 ∗ X 1 X 2 − X 1 \Rarr \frac{X_2*Y_1-X_1*Y_1-Y_2*X_1+Y_1*X_1}{X_2-X_1} ⇒X2−X1X2∗Y1−X1