这里数据太水了吧,暴力竟然都可以过。
然后第二种方法是拓展欧几里得。
题意:给你T组数据 x[1],x[3],x[5]…x[2*T-1]
x[i]=(a*x[i-1]+b)%10005; 让你输出x[2],x[4],…x[2*T];
枚举a,然后通过x[1],x[3]求b,然后验证符不符合。
-10001k+(a+1)b=x3-a*a*x1; 就是拓展欧几里得,记得用gcd求出来的一组解还要乘上c/gcd;
这里b只用一组解就行了,因为b=y0+10001*k,之后会被约掉
wa,这里有一个坑点,就是会报PE,因为UVA 要用%lld,那为什么不报WA呢。。。。。。。。
#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 20005;
#define inf 10001
#define ll long long
void gcd(ll a,ll b,ll &d,ll &x1,ll &y1)
{
if(!b){
x1=1;y1=0;d=a;
return ;
}
else {
gcd(b,a%b,d,y1,x1);
y1-=x1*(a/b);
return ;
}
}
ll x[maxn];
int main()
{
//freopen("E:\\input.txt","r",stdin);
int t;
scanf("%d",&t);
for(int i=1;i<=t;i++)
scanf("%I64d",&x[2*i-1]);
int flag=0;
for(ll a=0;a<=10000;a++)
{
ll temp=(x[3]-a*a*x[1]);
ll x1,y1,d;
gcd(10001,a+1,d,y1,x1);//这里要对应好
if(temp%d) continue;
else {
ll k=x1*temp/d;//这里temp/b不能加abs
for(int i=2;i<=2*t;i++)
{
ll tt=(a*x[i-1]+k)%inf;
if(i&1)
{
if(tt!=x[i])
break;
}
x[i]=tt;
if(i==(2*t))
flag=1;
}
if(flag==1) break;
}
if(flag==1) break;
}
for(int i = 2 ; i <= 2 * t ; i+=2)
printf("%lld\n",x[i]);
return 0;
}