算法题 SG函数-拆分Nim游戏(Python)

50 篇文章 5 订阅
35 篇文章 1 订阅

题目

给定n堆石子,两位玩家轮流操作,每次操作可以取走其中的一堆石子,然后放入两堆规模更小的石子(新堆规模可以为0,且两个新堆的石子总数可以大于取走的那堆石子数),最后无法进行操作的人视为失败。

问如果两人都采用最优策略,先手是否必胜。

输入格式

第一行包含整数n。

第二行包含n个整数,其中第ii个整数表示第ii堆石子的数量ai。

输出格式

如果先手方必胜,则输出“Yes”。

否则,输出“No”。

数据范围

1≤n,ai≤100

输入样例:

2
2 3

输出样例:

Yes

代码

n = int(input())
stones = list(map(int, input().split()))

labels = [-1] * 200

def sg(stone):
    if labels[stone] != -1: return labels[stone]
    connect = set()
    for i in range(stone):
        for j in range(i+1):
            connect.add(sg(i)^sg(j))
    i = 0
    while True:
        if i not in connect:
            labels[stone] = i
            break
        i += 1
    return labels[stone]
    
res = 0
for stone in stones:
    res ^= sg(stone)

if res == 0: print('No')
else: print('Yes')
    

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值