标题:连号区间数
小明这些天一直在思考这样一个奇怪而有趣的问题:
在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是:
如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的“连续”数列,则称这个区间连号区间。
当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助。
输入格式:
第一行是一个正整数N (1 <= N <= 50000), 表示全排列的规模。
第二行是N个不同的数字Pi(1 <= Pi <= N), 表示这N个数字的某一全排列。
输出格式:
输出一个整数,表示不同连号区间的数目。
示例:
用户输入:
4
3 2 4 1
程序应输出:
7
用户输入:
5
3 4 2 5 1
程序应输出:
9
解释:
第一个用例中,有7个连号区间分别是:[1,1], [1,2], [1,3], [1,4], [2,2], [3,3], [4,4]
第二个用例中,有9个连号区间分别是:[1,1], [1,2], [1,3], [1,4], [1,5], [2,2], [3,3], [4,4], [5,5]
资源约定:
峰值内存消耗(含虚拟机) < 64M
小明这些天一直在思考这样一个奇怪而有趣的问题:
在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是:
如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的“连续”数列,则称这个区间连号区间。
当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助。
输入格式:
第一行是一个正整数N (1 <= N <= 50000), 表示全排列的规模。
第二行是N个不同的数字Pi(1 <= Pi <= N), 表示这N个数字的某一全排列。
输出格式:
输出一个整数,表示不同连号区间的数目。
示例:
用户输入:
4
3 2 4 1
程序应输出:
7
用户输入:
5
3 4 2 5 1
程序应输出:
9
解释:
第一个用例中,有7个连号区间分别是:[1,1], [1,2], [1,3], [1,4], [2,2], [3,3], [4,4]
第二个用例中,有9个连号区间分别是:[1,1], [1,2], [1,3], [1,4], [1,5], [2,2], [3,3], [4,4], [5,5]
资源约定:
峰值内存消耗(含虚拟机) < 64M
CPU消耗 < 5000ms
比赛的时候没做出来 原因是看不懂题 看懂题之后才发现这道题很简单 居然27分
import java.util.Arrays;
import java.util.Scanner;
public class 连号区间数 {
static int [] a = null;
static int count = 0; //记录个数
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
sc.nextLine();
a = new int[n];
for (int i = 0; i < a.length; i++) {
a[i] = sc.nextInt();
}
count += a.length;//自己和自己肯定是连号区间 先加上
f();
System.out.println(count);
}
public static void f() {
for (int i = 0; i < a.length; i++) {
for (int j = i + 1; j < a.length; j++) {
int[] temp = new int[j - i + 1];
for (int k = i; k < j + 1; k++) {
temp[k - i] = a[k];
}//将子串存到temp里
Arrays.sort(temp); //字串按顺序排列
boolean flag = false;
for (int k = 0; k < temp.length - 1; k++) {
if (temp[k] != temp[k + 1] -1) //判断是否连续
flag = true;
}
if (!flag)
count++;
}
}