数学基本定理-----不可摸数-----HDOJ1999

Problem Description
s(n)是正整数n的真因子之和,即小于n且整除n的因子和.例如s(12)=1+2+3+4+6=16.如果任何
数m,s(m)都不等于n,则称n为不可摸数.
 

Input
包含多组数据,首先输入T,表示有T组数据.每组数据1行给出n(2<=n<=1000)是整数。
 

Output
如果n是不可摸数,输出yes,否则输出no
 

Sample Input
  
  
3 2 5 8
 

Sample Output
  
  
yes yes no 若t是素数,若使S(m) = n,则m = t * t,此时m的真因子有1和t,S(m) = t + 1 = n t不是素数,若t可以表示成两个素数的和,设 i 是素数,t = i + (t-i) 要使S(m) = n 则m = i * (t - i),此时 m 的真因子有 1, i , t - i 则S(m) = 1 + i + t - i = t + 1 = n
#include<cstdio>
#include<cstring>
int m[1010], n[1010], s[1000];
int main(){
    int a, b, sum = 0;
    memset(m, 0, sizeof(m));
    memset(n, 0, sizeof(n));
    memset(s, 0, sizeof(s));
    for(int i = 2; i <= 1000; i++){//筛选法求出素数
        for(int j = i * i; j <= 1000; j += i){
            m[j] = 1;
        }
    }
    for(int i = 2; i <= 1000; i++){//素数 + 1是不可摸数
        if(!m[i]){
            n[i+1] = 1;
            s[sum++] = i;
        }
    }
    for(int i = 0; i < sum; i++){//两素数和+1也是不可摸数
        for(int j = i + 1; j < sum; j++){
            if(s[i] + s[j] + 1 <= 1000){
                n[s[i] + s[j] + 1] = 1;
            }
        }
    }
    scanf("%d", &a);
    while(a--){
        scanf("%d", &b);
        printf(!n[b] ? "yes\n" : "no\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值