大数据玩家eBay:猜出你的购买欲

      引自:itongji.cn

   

        在网络世界,数据就是金钱。

        毫无疑问,eBay拥有的数据量是惊人的。其每天都要处理100PB的数据,其中包括50TB的机器数据。可以说,eBay每天都面临着天文数字般的大数据挑战。

        早在2006年,eBay就成立了大数据分析平台。为了准确分析用户的购物行为,eBay定义了成百上千种类型的数据,并以此对顾客的行为进行跟踪分析。然而,这同时也为eBay带来了新的挑战。要知道,公司的数据量多到难以想象,没有人能分析消化这么多的数据,也没有人能基于所有数据建立起模型。

        事实上,eBay真正应用到的,只是其收集的数据中的一小部分。“剩余的数据,eBay或是将其丢弃,或是将其存储起来。因为说不定哪天,科技实现了突破,这些数据就会变得有用。”eBay大中华区CEO林奕彰指出。

        那么目前,eBay是如何利用这些数据,来促进业务创新和利润增长的呢?

为用户“画像”

        eBay拥有近2亿的用户,网站的商品清单项目则有3万多类。在平台的日常交易中,eBay几乎每秒都要处理数千美元。而这些交易数据,其实只是eBay全站数据信息总量的“冰山一角”。

        基于大数据分析,eBay每天要回答的问题有很多,比如,“昨天最热门的搜索商品是什么?”而即便是这样的简单问题,都需要涉及处理五十亿的页面浏览量。从这个角度看,任何一个基本的业务问题,对公司来说都是一个相当巨大的问题。

        就eBay如何利用大数据来增加在线交易,林奕彰举了一个典型的例子。譬如,一位年轻的女性早上10点在星巴克浏览eBay网站,eBay应该推送给她什么样的商品呢?

        “就这几个信息点,我们其实已经做了不少研究。”林奕彰说,“事实上,用户早晨10点、中午12点,或是晚上7点,她浏览的商品是不同的;在餐厅或是在家里,同样会对浏览和搜索产生影响;此外,还有用户的年龄、当时的天气等等,都会对购物产生影响。eBay要做的,就是学习不同情景下的不同购物模式,并推送给用户最想要的商品。”

        据悉,eBay可以从用户以往的浏览记录里“猜”她想要什么样的商品,也可以从设定的成百上千种情景模型中计算出用户可能的需求;或是对照另一位有着相似特点的女性用户,看她当时买过什么样的商品,从而推断出这位用户潜在的需求。在综合各种考量因素后,eBay的后台需要在短短几秒内将商品页面推送给用户。这意味着,eBay的系统需要有非常快的运算速度。

        这种运算模型,有相当一部分人为的因素。比如,机器可以搜集用户的上万个数据,但eBay的工程师可以定义其中的100个数据为有效数据,而模型则建立在这些有效数据之上。此外,当计算机自动“学习”分析各种数据形成的趋势时,eBay需要将机器学习的逻辑设定在与商品交易相关的行为上。

        除了通过大数据为用户“画像”而向其推送有针对性的商品,eBay此前还尝试利用大数据进行搜索引擎的优化。

        具体说来,eBay可以把握用户的行为模式,使搜索引擎更加“直觉化”。如果时间倒退几年,用户在使用eBay的搜索引擎时,会发现它只能理解字面的意思,并按照字面意思寻找。很多时候,搜索引擎并不能理解用户的真实意图。但现在,eBay正试着改变或重写用户的搜索请求,增加同义词或替换语句,从而给出更相关性的内容,并由此增加在线交易量。而这背后,统统离不开大数据的支持。

试错与挑战

        和其他在线交易平台一样,eBay对假货亦十分敏感。眼下,公司试图通过大数据技术,让系统“智能”地识别出假货。

        实际上,“网络打假”工作并不容易。要知道,假货常常以各种形态出现在网络上,且屡禁不止。以Rolex为例,假货商家可能在单词中增加一个空格,也可能将其中两个字母互换位置,甚至名称里根本不出现Rolex,只是图片展示出Rolex手表的样子。eBay上有如此多的品牌,自然有形形色色的假货充斥其中。这种情况下,单是靠在商品名称或描述里抓关键词,根本抓不住假货。

        而eBay眼下做的,就是通过数据分析建立起一种模型或规则,假如商家的交易符合这种规则或特征,便有可能是在卖假货。

        打个比方,当一个卖家的商品卖的很便宜,卖得很快,但后面的抱怨和退货很多,系统就会把这个“可疑”的模式识别出来,然后再由工作人员去判断,这个卖家是否在卖假货。换言之,“即便数据的量再大,卖假货的人都有相对固定的模式。”林奕彰称。而通过这种方式,eBay有效地鉴别出不少假货商家。

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页