钟表上的数学问题

本文探讨了钟表上的数学问题,包括时针与分针的重合次数、时间以及它们形成特定角度的情况。通过解析方程和观察规律,我们发现24小时内时针与分针重合22次,相邻重合间隔相同,并介绍了如何确定两针重合的具体时刻。此外,还讨论了两针形成一定角度时的相遇频率。
摘要由CSDN通过智能技术生成

钟表上有很多有趣的数学问题,下面就循序渐进的带大家走入神秘的钟表问题。

 

1.中午12点整的时候,时针与分针发生重合。请问下一次重合是什么时刻?

初略的看,12点之后1点之前,分针永远在时针前面,可以感受到重合将会发生在1点05分和1点10分之间。

我们假设1点X分时两针重合。注意到分针的速度是时针的12倍,于是我们便有方程:x = x / 12 + 5.

解得x = 60 / 11. 所以1点5分60/11秒,时针与分针再次重合。

 

2.一天24小时之内,时针与分针发生了多少次重合?

如果我们硬要用数学方法算,则如下:

记x为从零点整开始过了x分钟后两针重合,方程的解的个数就是答案:x % 60 = (x / 12) % 60,0 <= x < 60*24=1440

直接去求方程的解的个数是比较麻烦的。当然可以求出有22个解。

这里给出一个比较直观简单的想法。

从零点整开始到零点59分59秒,有一次重叠,这是显然的;

从1点整到1点59分59秒,有一次重叠,这是因为分针扫了一周,而时针只是从1走到了2;

从2点整到2点59分59秒,类似的,也有一次重叠;

……

这样下去貌似每个小时段都会有重叠发生。那么到底有没有例外呢?

有。在11点整到11点59分59秒,这里是不会发生重叠的。为什么?

因为12点整两针重叠,往前的一小段时间里分针永远在时针后面(我们假设回拨时钟,则分针走得都比时针快)。

于是我们便有了最终答案,除去两个11点,一天里便发生24 - 2 = 22次重叠。

还有一种思路是,我们考虑12小时内,时针转了一圈,分针装了12圈,所以发生了11次重合(刚满12小时那一瞬间重合是不算的)。

这样得出的结论也是22次。


3.算出所有两针重叠的时刻

注意到两次相邻重叠的时间间隔是一样的。为什么࿱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值