钟表上有很多有趣的数学问题,下面就循序渐进的带大家走入神秘的钟表问题。
1.中午12点整的时候,时针与分针发生重合。请问下一次重合是什么时刻?
初略的看,12点之后1点之前,分针永远在时针前面,可以感受到重合将会发生在1点05分和1点10分之间。
我们假设1点X分时两针重合。注意到分针的速度是时针的12倍,于是我们便有方程:x = x / 12 + 5.
解得x = 60 / 11. 所以1点5分60/11秒,时针与分针再次重合。
2.一天24小时之内,时针与分针发生了多少次重合?
如果我们硬要用数学方法算,则如下:
记x为从零点整开始过了x分钟后两针重合,方程的解的个数就是答案:x % 60 = (x / 12) % 60,0 <= x < 60*24=1440
直接去求方程的解的个数是比较麻烦的。当然可以求出有22个解。
这里给出一个比较直观简单的想法。
从零点整开始到零点59分59秒,有一次重叠,这是显然的;
从1点整到1点59分59秒,有一次重叠,这是因为分针扫了一周,而时针只是从1走到了2;
从2点整到2点59分59秒,类似的,也有一次重叠;
……
这样下去貌似每个小时段都会有重叠发生。那么到底有没有例外呢?
有。在11点整到11点59分59秒,这里是不会发生重叠的。为什么?
因为12点整两针重叠,往前的一小段时间里分针永远在时针后面(我们假设回拨时钟,则分针走得都比时针快)。
于是我们便有了最终答案,除去两个11点,一天里便发生24 - 2 = 22次重叠。
还有一种思路是,我们考虑12小时内,时针转了一圈,分针装了12圈,所以发生了11次重合(刚满12小时那一瞬间重合是不算的)。
这样得出的结论也是22次。
3.算出所有两针重叠的时刻
注意到两次相邻重叠的时间间隔是一样的。为什么