计算机视觉
bluesliuf
bluesliuf@163.com
展开
-
基于深度神经网络的图像噪声分类与去噪
本篇博文主要介绍对不同类型的图像噪声进行分类和去噪。发表论文The classification and denoising of image noise based on deep neural networks (SCI)项目简介现有的去噪方法取决于噪声类型的信息,通常由专家分类。换句话说,那些方法没有应用计算方法来对图像噪声类型进行预分类。此外,这些方法假设图像的噪声类型是像高斯噪声...原创 2020-03-08 15:11:10 · 10020 阅读 · 18 评论 -
人脸对齐:人脸关键点检测发展概述(含数据集及论文解读)
4个月的实习结束了,本文主要记录自己实习期间对人脸关键点检测的调研结果。目录结构1.背景介绍2.开源数据集3.评价指标4.检测方法5.论文解读5.1传统方法Active Shape Models-Their Training and Application5.2基于级联形状回归Cascaded pose regression CVPR2010...原创 2019-09-30 14:50:23 · 2124 阅读 · 2 评论 -
FaceNet在FPGA等硬件平台上的实现
本文主要介绍将训练好的网络模型,移植到FPGA等硬件平台上所必须的准备工作。不涉及具体的用C语言重新编写卷积操作、RAM存储等设计,本人做的只是辅助工作=-=。项目简介论文地址:FaceNet: A Unified Embedding for Face Recognition and Clustering将在服务器上训练好的FaceNet模型移植到FPGA等硬件平台上,实现人脸的检测推断过...原创 2019-07-27 15:22:27 · 780 阅读 · 0 评论 -
基于深度学习框架的水声信号的扩充和分类识别
现如今,基于声音信号的海上目标识别是进行海量探测和目标识别的可靠方法,也是水声信号处理领域的重要研究内容。发表论文:Expansion of restricted sample for underwater acoustic signal based on generative adversarial networks (EI)Deep Learning based Framework f...原创 2019-07-27 15:18:10 · 10147 阅读 · 23 评论 -
计算机视觉面试常见问题(含解答)
最近忙着找实习,对计算机视觉中常见的问题做了简单梳理,会不定时更新。CNNCNN在图像上表现好的原因直接将图像数据作为输入,不仅无需人工对图像进行预处理和额外的特征抽取等复杂操作,而且以其特有的细粒度特征提取方式,使得对图像的处理达到了几近人力的水平。参数和计算量的计算卷积输入为W×H×CW \times H \times CW×H×C,卷积核K×K×NK \times K \times...原创 2019-04-18 21:54:44 · 20686 阅读 · 1 评论 -
CNN网络架构演进:从LeNet到DenseNet
本文主要介绍卷积神经网络(CNN) 的发展演变,包含对每个网络的结构分析,创新点总结。内容来自自己的收集整理,还有网易云课堂吴恩达的卷积神经网络教学视频。LeNet-5LeNet是LeCun在1998年提出,用于解决手写数字识别(0-9) 的视觉任务。自那时起,CNN的最基本的架构就定下来了:卷积层、池化层、全连接层。如今各大深度学习框架中所使用的LeNet都是简化改进过的LeNet-5。和原...原创 2019-04-18 12:45:33 · 1069 阅读 · 0 评论 -
2019春阿里计算机视觉实习岗在线笔试题
刚参加了阿里的计算机视觉实习岗的在线笔试题,人有点懵,提前半小时就交卷了。单项选择题(10道),半小时交卷真第一次遇见单选题有6个选项的=-=网络协议(百万级路由器的TCP协议,让你选择正确的方案)哈希表求解[100,999]区间内个十百位相加能被8整除的数字的个数(这个简单)投票重叠,集合的交并补双向循环链表(前插后插、删除,选择不正确的一项)左轮手枪,共8发子弹,有2发子弹有...原创 2019-04-12 20:40:07 · 2861 阅读 · 3 评论 -
CNN网络发展史
转载自 https://www.cnblogs.com/skyfsm/p/8451834.html转载 2019-03-28 11:43:51 · 570 阅读 · 0 评论 -
2019春实习-百度-计算机视觉算法研发工程师真题
前两天刚参加完百度计算机视觉算法实习岗的远程笔试,下面是我记忆中的一些考题,先记录下来,等答案公布再来详细分析。题型选择:30道,每题2分,共60分问答:1道,每题30分,共30分设计:1道,每题30分,共30分编程:2道,每题20分,共40分总分160分,考试时间2h选择题选择题包含单选和多选,涉及到的考点很广,主要包括数据结构、操作系统、网络、C++程序题、视觉相关题等。数...原创 2019-04-04 21:58:38 · 1980 阅读 · 4 评论 -
准确率,精确率,召回率和F1值
机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accuracy),精确率(Precision),召回率(Recall)和F1-Measure。 (注: 相对来说,IR 的 ground truth 很多时候是一个 Ordered List, 而不是一个 Bool 类型的 Unordered Co...原创 2019-03-27 09:15:48 · 20229 阅读 · 3 评论 -
数字图像处理的常用方法
layout: post # 使用的布局(不需要改)title: 数字图像处理的常用方法date: 2019-03-25 16:59:56type: categoriesauthor: Liu Fantags:Image processingcategories: Computer visionmathjax: truecatal...原创 2019-03-26 19:18:13 · 1691 阅读 · 0 评论