人脸对齐:人脸关键点检测发展概述(含数据集及论文解读)

4个月的实习结束了,本文主要记录自己实习期间对人脸关键点检测的调研结果。

目录结构

在这里插入图片描述

1.背景介绍

在这里插入图片描述

2.开源数据集

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.评价指标

在这里插入图片描述
在这里插入图片描述

4.检测方法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.论文解读

5.1传统方法

5.1.1 Active Shape Models-Their Training and Application

在这里插入图片描述
在这里插入图片描述

5.2基于级联形状回归

5.2.1 Cascaded pose regression CVPR2010

在这里插入图片描述
在这里插入图片描述

5.3 基于深度学习

5.3.1 Deep Convolutional Network Cascade for Facial Point Detection CVPR2013

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.3.2 Extensive Facial Landmark Localization with Coarse-to-Fine Convolutional Network Cascade ICCV2013

在这里插入图片描述
在这里插入图片描述

5.3.3 Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks ECCV2016

在这里插入图片描述
在这里插入图片描述

5.3.4 Deep Alignment Network: A convolutional neural network for robust face alignment CVPR2017

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.4 前沿方法

5.4.1 Look at Boundary: A Boundary-Aware Face Alignment Algorithm CVPR2018

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.4.2 Style Aggregated Network for Facial Landmark Detection CVPR2018

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.4.3 Semantic Alignment: Finding Semantically Consistent Ground-Truth for Facial Landmark Detection CVPR2019

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.4.4 Robust Facial Landmark Detection via Occlusion-adaptive Deep Networks CVPR2019

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6.部分论文复现成果展示

公开数据集
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
真实监控场景
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

发布了56 篇原创文章 · 获赞 85 · 访问量 4万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 黑客帝国 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览