LangChain 中一些常见的链类型:
1. Simple Chain或LLM Chain
- 特点: 这是最基础的链类型。它将输入传递给单个模型,然后将模型的输出直接返回。
- 适用场景: 处理简单的输入到输出的任务,例如将一个用户问题传递给一个语言模型并返回答案。
- LLM chain适用场景: 适合与各种语言模型交互的任务,如文本生成、总结、翻译等。
2. Sequential Chain
- 特点: 这种链将多个链顺序连接在一起。每个链的输出将作为下一个链的输入。
- 适用场景: 适用于需要多步骤处理的任务,例如:首先通过一个链从用户输入中提取实体,然后将这些实体传递给另一个链来生成响应。
3. Router Chain
- 特点: 根据输入内容,动态选择并执行不同的子链。它通常用于需要对输入进行分类或选择不同处理路径的任务。
- 适用场景: 适用于复杂的任务调度,例如根据用户问题的类型选择不同的处理逻辑或工具。
4. MultiInputChain
- 特点: 这种链可以接收多个输入,并将这些输入整合后传递给下一个处理步骤。
- 适用场景: 适用于需要多种输入来源的任务,例如结合用户输入和上下文信息生成响应。