图——定义和基本术语

图是数据结构中非常重要的一章,这篇文章就先介绍一下图的定义和基本术语。

 一,图的构成

          图:Graph=(V,E)

          V:顶点(数据元素)有穷非空集合;

          E:边的有穷集合。

如下面这个图,由点集和边集可以确定。

二,图的分类 

图从边的方向上分为两类:

无向图:

        每条边都是无方向的

有向图:

        每条边都是有方向的

上面的图G1属于有向图,它的每条边都有方向。而下面的G2就属于无向图,它的边都没有方向:

 完全图:

        任意两个点都有一条边相连

完全图从图的大类上又分为无向完全图和有向完全图

然后就是根据图的边集和点集的数量,将图分为了:

稀疏图稠密图 

 三,图的相关概念

 顶点的度

        与该顶点相关联的边的数目,记为TD(v)

        在有向图, 顶点的度等于该顶点的入度出度之和。

        顶点 v 的入度是以 v 为终点的有向边的条数, 记作 ID(v)

        顶点 v 的出度是以 v 为始点的有向边的条数, 记作OD(v)

 问:当有向图中仅1个顶点的入度为0,其余顶点的入度均为1,此时是何形状?

答:是树!而且是一棵有向树

路径:接续的边构成的顶点序列。

路径长度:路径上边或弧的数目/权值之和。

回路()第一个顶点和最后一个顶点相同的路径。

简单路径:顶点不重复出现的路径

简单回路(简单环)除路径起点和终点相同外,其余顶点均不相同的路径

我们可以结合生活中的出行路径来理解

连通图(强连通图 )

在无(有)向图G=( V, {E} )中,若对任何两个顶点 vu 都存在从v u 的路径,则称G是连通图(强连通图)。

权与网 

        图中边或弧所具有的相关数称为权。表明从一个顶点到另一个顶点的距离或耗费。带权的图称为

 子图

设有两个图G=V{E})、G1=V1{E1}),若V1Í  VE1 Í E ,则称 G1G的子图。
:(b)(c) (a) 的子图。

连通分量(强连通分量) 

        无向图G 极大连通子图称为G连通分量
  
      极大连通子图意思是:该子图是 G 连通子图,将G 的任何不在该子图中的顶点加入,子图不再连通。

有向图G 极大强连通子图称为G强连通分量

极大强连通子图意思是:该子图是G的强连通子图,将D的任何不在该子图中的顶点加入,子图不再是强连通的。

 

极小连通子图

        该子图是G 的连通子图,在该子图中删除任何一条边,子图不再连通。
生成树:

        包含无向图G 所有顶点的极小连通子图。

生成森林:

        对非连通图,由各个连通分量的生成树的集合。       

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值